appleseed05
发表于 2010-9-21 00:55
理论上是多少个自由度就有多少阶固有频率,但是现实中的结构都是连续系统,拥有无穷自由度,固有频率也会无穷。但是在对结构进行研究的时候往往只寻找感兴趣的几阶固有频率,一般要么是前几阶(为了避免共振),要么是特定的几阶(如第二阶扭转,第三阶振动)等等。
cl_1982614
发表于 2010-11-29 01:31
是的.固有频率就是矩阵特征值问题。模态就是特征向量的问题。有多少个自由度理论上就能求出多少个固有频率,也就是Lz所说的多节固有频率。但我们一般只关注前几阶固有频率,这几阶固有频率一般都有具体的物理含义。比如说,对应于系统的弯曲和扭转模态等。根据计算的需要,关注的问题不同。
田间散步
发表于 2011-2-18 16:10
哈哈,学习了,楼上几人的回答与我的理解一致,哈哈
欧阳中华
发表于 2011-2-18 17:06
.
cl_1982614的论述不是非常严谨,振动物理系统的固有特性,应该是相应数学描述问题的特征问题,如果采用数值求解这个数学问题,就是cl_1982614说的变成矩阵的特征值问题,当然简单问题可以解析出特征值和特征函数. . .
系统一般低频比较关注,那是因为工程上研究的对象不管是机械还是结构,激励源都是低频的,或者说激励能量低频成分是最最主要的,从分析目的是衡量系统的安全性来说,显然抓主要矛盾,只要关注低频振动就可以了,如果要研究振动产生声辐射低频就不再合适了. ..
“但我们一般只关注前几阶固有频率,这几阶固有频率一般都有具体的物理含义。”针对研究对象的不同是不同的,之所以得到这样概念,那是实际分析对象往往都是简单规则形状,而不仅仅是低频造成的,最一般的情况,任选一个物体,随机形状、随机模量分布、随机质量分布,就依据线弹性理论,其一阶模态一定是千姿百态的,.. .
弯曲、扭转. . .长边、短边、半径. . . .都是为了简单人为构造出简单模型的特征量而已.. . .当然正是这种假设使问题简化,体现了人的聪慧才能 .. .
ChaChing
发表于 2011-2-18 21:04
本帖最后由 ChaChing 于 2011-2-18 21:05 编辑
欧阳中华 发表于 2011-2-18 17:06 http://www.chinavib.com/static/image/common/back.gif
...如果要研究振动产生声辐射低频就不再合适了 ...
个人水平的确有限, 问个小白问题
振动模态在高频部分难以準确, 尤其实际复杂结构体, 如此是否可以推测振动产生声辐射的分析结果, 更难以準确??
欧阳中华
发表于 2011-2-19 08:20
.
高频声辐射,甚至中频就不用有限元,而是采用统计能量法。。
zgdy_1
发表于 2011-4-3 19:35
我写写我的理解吧.。
不论是在工程还是其它什么领域,实际分析对象的模拟都是将其数据化。以对一个机翼进行有限元分析为例,我们通过建模软件Patran等对其进行有限元划分,这似乎是很简单的作图过程,其实我们是在将机翼数据化,我们要的不是Patran模型的“形”,而是模型各个离散节点实际数据坐标以及采用何中理论模型对这些实际节点构成的单元刻画。这个离散过程将一个实际的连续机翼离散为有限的自由度(一般采用的节点的数量乘以6减去约束自由度等),最终我们得到的是代表这个机翼的三个矩阵(质量、刚度和阻尼),这些矩阵的维数就是“阶次”,一般它们刚度和质量矩阵都是对称矩阵。这样我们这就将实际的机翼“数学化”了。经过特征值求解(有阻尼情况一般在进行状态空间转化的时候使得系统矩阵阶次翻倍),按照特征值的由小到大的顺次我们依次将得到的特征值命名为第一第二等阶模态,对应的特征矢量代表第一第二等阶模态。最终分析结果能得到的模态的阶次不会超过矩阵的维数。其实这就是当前结构线性分析的典型思路。
庄生小梦2009
发表于 2011-4-3 23:05
很喜欢看大家讨论。
真是一种享受啊!
努力学习,争取能加入到讨论之中。
04090328
发表于 2011-4-23 10:00
回复 22 # zgdy_1 的帖子
问前辈个小白的问题。
您说按照特征值的大小能相应得到第一、第二阶的模态。不知道您所说的特征值是不是一个数字,是怎么对应一个模态的呢?
我刚接触振动领域,还需要您多多教育!
zgdy_1
发表于 2011-4-23 13:21
回复 24 # 04090328 的帖子
通过特征值求解,可以得到特征值和对应的特征向量,我们一般按照特征值由小到大的顺序将特征值进行排序,由于特征值和特征向量一般是一一对应的,这样在特征值排序过程中,特征向量也相应进行了排序。我不知道您说的“怎么对应”是什么意思,每个特征值是一个数字,但其对应的特征向量是个矢量,特征值对应频率,特征矢量对应于模态。不知道我说明白没有!
04090328
发表于 2011-4-23 13:30
回复 25 # zgdy_1 的帖子
明白了些,多谢前辈的热情指导!
您这边有没有相关计算的例子,我想学习下。
manguoyong
发表于 2011-11-13 16:17
理论上是自由度数和固有频率的阶数相等
sunrain
发表于 2011-12-23 10:13
回复
根据分析目的不同,几百甚至成千上万应该easy
VibrationMaster 发表于 2010-9-9 18:23 可能计算上能实现,但高阶振型的有效性还是值得探讨。
同意该观点,一般5、6阶的感觉就足够了。
sunrain
发表于 2011-12-23 10:24
回复
根据分析目的不同,几百甚至成千上万应该easy
VibrationMaster 发表于 2010-9-9 18:23 可能计算上能实现,但高阶振型的有效性还是值得探讨。
同意该观点,一般5、6阶的感觉就足够了。
mrzhou1320
发表于 2012-3-20 13:47
自由度和阶数理论上是一致的,一般前面几阶易求,往后不宜,准确性估计也不高