求解分数阶裂纹转子方程组的问题
分数阶裂纹转子方程组,求解的时候,我先把分数阶按一阶导数来求,然后,根据分数阶微积分的定义,用一个函数来换一阶倒数可以这样想吗?有人解过这个方程了,没有程序,请高手多多指教{:{18}:} 微积分定义% This function calculates the fractional derivative of order 揹�for the% given function r(t). It is assumed that the vector 搑�contains the
% samples of the continuous signal r(t) which we are going to calculate its
% fractional derivative. 揾�is a constant and represents the sampling
% period of r(t) (the time period between two samples). 揾�must be small
% enough in the sense of Nyquist sampling theorem.
% 搚�is the result achieved by applying the fractional differentiation
% operator on the input 搑� This contains the samples of the real output
% y(t) with the same sampling period used for 搑�
% It makes use of the Gr黱wald-Letnikov definition. The first element of
% the vector "r", i.e. r(1), is always zero.
%
% d : the order of fractional differentiation
% r : samples of the signal to be differentiated
% h : sampling poriod
function = fderiv(d,r,h)
temp = 0;
for i=1:length(r)
for j=0:i-1
temp = temp+(-1)^j*(gamma(d+1)/(gamma(j+1)*gamma(d-j+1)))*r(i-j);
end
y(i) = temp;
temp = 0;
end
y = y/(h^d); 把二阶进行降阶,然后用龙哥库塔法求解 本帖最后由 372861286 于 2013-3-5 21:50 编辑
导师逼的太急,也不知道思路对不对,头都大了 分数阶微分方程不能直接用龙格库塔法吧? shenyongjun 发表于 2013-3-6 17:12 static/image/common/back.gif
分数阶微分方程不能直接用龙格库塔法吧?
我看西安交通大学发表的一篇论文,他先把分数阶连分式展开,欧拉法和IIR滤波器模型对方程近似计算,在用的龙格库塔法求解,我刚接触分数阶没多久,对他用的这些方法不了解,不知道那位大师做过相关的,指点我一下 我记得比较简单的方法就是直接按照定义将分数阶微分项展开(就是4楼你的公式),同时也将其他项进行一阶Taylor展开,进行求解。
这种方法的特点是编程简单,但是计算量较大
页:
[1]