|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
dx1/dt=x1*(r1-a11*x1-a12*x2-a13*x3)
dx2/dt=x2*(r2-a21*x1-a22*x2-a23*x3)
dx3/dt=x3*(r3-a31*x1-a32*x2-a33*x3)
其中,参数r1,r2,r3,a11,aij可变,请问用什么理论或方法可以求出此系统出现极限环的条件以及出现混沌的条件
我看到参考书有人画出了此系统的三维混沌轨迹图。他给的条件是:
r1=1.1,r2=-0.5,r3=0.1+a31
aij=
0.5 0.5 0.1
-0.5 -0.1 0.1
a31 0 0.1
当a31=1.2时,上述方程组系统相图出现一周期,
a31=1.32时,上述方程组系统相图出现2周期,
a31=1.835时,系统相图出现4周期,
a31=1.43时,系统相图表现出混沌.
我试着用Matlab对上述方程组进行仿真,取a31=1.2,作出相图,怎么也做不出一周期的极限环,请问问题是否出在初值的选取
f= @(t,x,a11,a12,a13,a21,a22,a23,a31,a32,a33)[x(1)*(1.1-a11*x(1)-a12*x(2)-a13*x(3));
x(2)*(-0.5-a21*x(1)-a22*x(2)-a23*x(3));
x(3)*(1.3-a31*x(1)-a32*x(2)-a33*x(3))];
t_final=100;x0=[2;3;2];
a11=0.5;a12=0.5;a13=0.1;
a21=-0.5;a22=-0.1;a23=0.1;
a31=1.2;a32=0;a33=0.1;
options=odeset; options.RelTol=1e-6;
[t,x]=ode45(f,[0,t_final],x0,options,a11,a12,a13,a21,a22,a23,a31,a32,a33);
plot(t,x),figure;
plot3(x(:,1),x(:,2),x(:,3));
[ 本帖最后由 咕噜噜 于 2009-5-1 18:41 编辑 ] |
|