声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1591|回复: 0

[综合] 关于频率校正中FFT+DFT谱连续细化分析傅立叶变换方法的问题

[复制链接]
发表于 2008-6-25 13:45 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
不知道哪位兄长用过频率校正中的FFT+DFT谱连续细化分析傅立叶变换方法。希望能探讨一下,谢谢。

两个问题:
1 我看这种方法的似乎很不错,突破了采样率的限制,实现的话除了计算量会大一些没有其他明显的缺点了,应该是有很好的应用前景才对,可是相关文献非常的少,应用也不广泛。那是为什么呢?

2 丁康的“离散频谱校正方法的综合比较”中,阐述这种方法的精度是非常高的。可是我的仿真中发现它远比前两种方法:重心法和比值法的精度低,不符合论文的阐述,不知道是否是自己的问题。附上程序和信号图片,希望高手能解答

我的程序是将原始数据,FFT后的数据,以及我要校正的频率点三个数据输入,最后得到一个纠正的频率输出。
我仿真的了一个99.2的正弦频率点,重心法和比值法的精度都很高,达到0.003个频率分辨率以内,而FFT+DFT法精度只有0.15个频率分辨率,与论文描述差距很大
function [n]=corr_gra(nsig2,t_nsig2,k);
% It is a polynominal interpolation function for signals that sampled with
% non-equal division
%
%       n_sig2:the original input signal
%       t_nsig2: fft transformed signal of the original input
%       k:the frequency you think we should use the grativity
%
%      n:the new frequency we correct

if (nargin<2),
    error('At leat 2 parameter required')
end

[sigrow,sigcol]=size(nsig2);
if (sigcol~=1),
    error('Sig must have one column')
end

[sigrow,sigcol]=size(t_nsig2);
if (sigcol~=1),
    error('tSig must have one column')
end

if t_nsig2(k-1)>t_nsig2(k+1),
  k2=k-1;
else
  k2=k+1;
end

b=max(k,k2);
s=min(k,k2);                       % [s,b] is the range, then we do further DFT

div=100;
% dftstep=(nt2(b)-nt2(s))/div;

for k=0:div
%    dftt=nt2(b)+k*(dftstep);
   a(k+1)=0;
   c(k+1)=0;
end

N=length(nsig2)
for i=0:div
   for k=0:N-1
       a(i+1)=a(i+1)+(1/N)*nsig2(k+1)*cos(2*pi*k*(s+i*0.01)/N);
       c(i+1)=c(i+1)+(1/N)*nsig2(k+1)*sin(2*pi*k*(s+i*0.01)/N);  
   end
   
   dftv(i+1)=sqrt(a(i+1)^2+c(i+1)^2);
  
end

n=s+(find(dftv==max(dftv))-1)*0.01

最后,是我仿真信号的频谱图,由在19和99.2的两个频点上的余弦信号组成,由于FFT的栅栏效应,进行频谱校正

[ 本帖最后由 feichina 于 2008-6-25 13:49 编辑 ]
频率校正仿真信号.jpg

本帖被以下淘专辑推荐:

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-26 16:56 , Processed in 0.075588 second(s), 23 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表