声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1843|回复: 2

[编程技巧] 求贝塞尔函数的0到无穷定积分

[复制链接]
发表于 2008-4-19 13:10 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
我的这个贝塞尔函数积分,它是零阶第一类和第二类,我已经用解了好多天,没有解决,还请你施以援手,小弟再次谢过.
q=(0.001,0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.9,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,200,300,400,500,600,700,800,900,1000);
  r=(1,1.5,2,2.5,3,4,5,6,7,8,9,10,15,20,25,30,45,50,60,70,80,90,100);
f=((besselj(0,x)bessely(0,x*r)-besselj(0,x*r)bessely(0,x))*exp(-q*x^2))/(x*((besselj(0,x)^2+bessely(0,x)^2)),
要求其在0到无穷的定积分,

[ 本帖最后由 eight 于 2008-4-21 21:32 编辑 ]
回复
分享到:

使用道具 举报

发表于 2008-4-20 19:34 | 显示全部楼层
不会,建议找本数学物理方法方面的书看看,或许会有帮助。
发表于 2008-9-16 20:55 | 显示全部楼层

回复 楼主 pgx0203 的帖子

你后来是怎样处理的啊,可以用符号积分但是他肯定说精确值找不到,你可以用数值积分,找一个大数,然后再找大数的两倍,让两次的结果在你的精度范围之内。
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-12 02:44 , Processed in 0.064005 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表