|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
<P>哪位大虾可以帮小女子看看下面的程序呀?</P>
<P>p=[307 287 258 151 274 364 430 331 291 188 250 254 239 426 315 370 376 273 256 344 260 252 389 312 181 314 313 228 620 490 466 254 311;<BR> 246 248 230 154 236 338 274 221 230 166 234 241 233 296 263 295 211 244 214 302 230 245 378 248 152 294 280 198 362 321 260 196 280;<BR>0.2874 0.2006 0.2696 0.3213 0.2631 0.2026 0.2734 0.2480 0.2164 0.3512 0.2981 0.2828 0.3438 0.2023 0.1906 0.2025 0.2134 0.2164 0.2422 0.2027 0.2828 0.2828 0.1859 0.2133 0.3061 0.1887 0.1909 0.2529 0.1548 0.2243 0.2760 0.2941 0.2343; <BR>0.2874 0.2006 0.2696 0.3213 0.2631 0.1887 0.2734 0.2480 0.2164 0.3512 0.2981 0.2828 0.3438 0.1787 0.1906 0.1811 0.2134 0.2164 0.2340 0.1887 0.2828 0.2828 0.1764 0.2133 0.3061 0.1723 0.1791 0.2529 0.1548 0.1958 0.2760 0.2941 0.2343; <BR>0.902 0.495 0.763 0.737 0.870 0.553 1.060 0.747 0.587 0.938 0.830 0.743 0.747 0.535 0.583 0.350 0.648 0.445 0.580 0.552 0.823 0.738 0.535 0.498 0.965 0.318 0.358 0.440 0.535 0.732 1.127 1.097 0.653 ;<BR>2.8 1 2 1 2 2 2.6 1.667 1.333 2 2.25 2 1 1.667 1.5 1.33 1.94 1 1 1.67 2 2 1 2.08 1 1 1 1 2.8 2.8 3.12 1.67 2.6;<BR>296 142 235 212 237 178 341 223 150 290 284 262 249 180 161 165 186 162 184 173 259 262 163 167 233 138 134 180 195 261 403 276 212;<BR>96.55 78.69 88.44 73.98 89.43 90.50 104.40 91.91 81.41 85.83 92.30 91.03 96.46 93.49 80.08 88.31 89.14 80.69 81.03 86.99 90.75 91.18 90.78 84.25 76.15 79.90 79.93 78.87 98.23 103.68 108.08 89.29 90.67;<BR>145.51 157.70 119.67 132.71 117.00 157.56 124.62 142.96 132.63 147.07 132.88 151.11 117.99 134.21 167.91 221.02 480.86 163.25 107.85 156.04 158.11 158.11 209.12 147.36 8.35 162.15 170.85 171.20 260.63 149.37 165.50 82.82 125.50; <BR>145.51 157.70 119.70 132.70 117.00 406.80 124.60 143.00 132.60 147.10 132.90 151.10 118.00 385.95 167.90 419.04 480.90 163.20 104.17 417.64 158.10 158.10 445.42 147.36 8.35 423.66 423.51 171.20 260.63 388.33 165.50 395.20 90.67]</P>
<P>t=[134.8 296.5 96.5 412.6 118.4 219.0 44.2 189.1 378.0 169.8 81.2 210.2 141.9 213.3 206.0 85.2 318.8 259.4 201.6 202.8 150.3 154.3 254.0 408.9 259.6 439.4 445.0 287.8 75.8 94.6 92.7 189.9 221.0]; </P>
<P>pp=[318 294 299 401 358;<BR>284 276 303 332 263;<BR>0.2197 0.2385 0.2340 0.1907 0.2264;<BR>0.2197 0.2385 0.2026 0.1907 0.2264;<BR>0.616 0.696 0.501 0.46 0.696; <BR>2 2.57 1.67 1.67 2.25;<BR>192 214 201 169 214;<BR>88.66 89.79 88.41 91.36 92.33 ;<BR>204.31 215.52 230.95 250.39 237.44; <BR>204.31 215.52 410.00 250.39 237.44]; </P>
<P>tt = [247.4 283.4 199.2 99.3 286.4]; </P>
<P>LearnRate = 0.01;<BR>LearnGoal = 0.01;<BR>LearnEpoch = 4000;<BR>HiddenLayer = 3;<BR>OutputLayer = 1;</P>
<P>[pred,cv,net,TR,R2] = fuc_training(p,t,pp,tt,LearnRate,LearnGoal,LearnEpoch,HiddenLayer,OutputLayer);</P>
<P>a=0;<BR>[Save_or_not]=SaveDlg(a);<BR>switch Save_or_not<BR>case 'Yes',<BR> save qq p t net TR R2 pred pp tt;%DemoResult is the filename to be saved<BR> otherwise<BR>end</P>
<P>function [pred,cv,net,TR,R2]=fuc(p,t,pp,tt,speed,goal,epoch,hiden_layer,output_layer)</P>
<P>%preprocessing the input vectors<BR>[p,meanp,stdp] = prestd(p);<BR>[p,transMat] = prepca(p,0.02);<BR>[p,minp,maxp,t,mint,maxt]=premnmx(p,t);<BR>pp = trastd(pp,meanp,stdp); <BR>pp = trapca(pp,transMat);<BR>pp =tramnmx(pp,minp,maxp);<BR>Pt = minmax(p);<BR>net=newff(Pt,[hiden_layer output_layer],{'tansig','purelin'},'trainlm');<BR>fprintf('\n\n');<BR>echo off ;<BR>net.trainParam.lr=speed;<BR>net.trainParam.epochs=epoch;<BR>net.trainParam.goal=goal;<BR>net.trainParam.min_grad=1e-15;<BR>net.trainParam.show=500;<BR>%net.trainParam.max_fail=100;<BR>%net.trainParam.mem_reduc=10;<BR>[net,TR] = train(net,p,t);<BR>pred = sim(net,pp);<BR>pred = postmnmx(pred,mint,maxt);<BR>cv = (pred-tt)./tt;<BR>R = corrcoef(pred,tt);<BR>%R2 = R(1,2);<BR>%[row,vol] = size(tt);</P>
<P>fprintf('\nthe predicted value is ');<BR>fprintf('%12.4f',pred);<BR>fprintf('\nthe measured value is ');<BR>fprintf('%12.4f',tt);<BR>fprintf('\n the error is ');<BR>fprintf('%12.4f',cv);<BR>%fprintf('\nthe correlate coefficient is %6.4f', R2);</P>
<P><BR>pic(tt,pred,R);</P>
<P><BR>function =Save_Dlg(a)<BR>s=questdlg('是否保存训练结果?','保存训练结果','Yes','No','No');</P>
<P>我想把里面的P矩阵换成下面的数据:</P>
<P>p=[2616 810.33 485.33 4450.33;<BR> 1.3748 1.3205 1.239 1.1276;<BR> 45 85 18 22; <BR> 0.3 0.39 0.46 0.72];</P>
<P>t=[4.9 5.9 4.0 6.5;<BR> 4.5 5.3 3.6 6.1;<BR> 4.6 5.5 3.6 6.0;<BR> 2.3 2.2 2.7 3.6;<BR> 2.4 2.0 3.7 5.1;<BR> 2.4 2.8 3.9 5.4]; </P>
<P>pp=[1974.67;<BR>1.1948;<BR>15;<BR>0.62]; </P>
<P>tt = [6.9;<BR> 6.2;<BR> 6.2;<BR> 4.3;<BR> 4.9;<BR> 5.2]; </P>
<P>明明已经换了,可为什么出来的结果还是预测的原来的数据的值呢???是不是要建立一个叫做“MATLAB data file"的文件呢?这个文件在哪里创建呢?</P>
<P>还有一个问题就是我只有四个样本,是不是对于神经网络预测来说太少了呢?</P>
<P>哪位高手明白,请帮帮忙吧!谢谢呀!!</P>
<P>或者直接回复到我的邮箱<a href="mailtjjpurple120@tom.com" target="_blank" >jjpurple120@tom.com</A>也可以,谢谢!!</P> |
|