声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 3956|回复: 2

[数学理论] 什么是非线性科学?

[复制链接]
发表于 2005-4-21 22:31 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
什么是非线性科学?
什么是非线性?非线性是一个数学名词,它指两个量之间没有象正比那样的“直线”关系。自然科学和工程技术中有许多问题要用到非线性的数学模型,比如,采用了非线性模型以后,可以说明为什么同一个前提会导致几种不同的后果,可以说明什么时候两种效应不能“叠加”(superposition),这两种现象会怎样彼此影响、发生“耦合”作用。

各门学科有各自的非线性问题,激光理论中有不少非线性光学问题,工程结构变形大的情况中要用非线性的结构力学,无线电技术中涉及非线性的振荡理论,说明化学反应中出现的螺纹波的起源,要用合适的非线性数学模型,等等。“非线性科学”是否管各门学科里所有非线性的问题呢?不是。真是那样的话,从数学的观点看来,线性是非线性的特殊情况,也可以算是非线性的一种,如果非线性科学里的“科学”又指所有学科,那么非线性科学就成为包罗一切的一门万能科学,也就甚么具体问题也不解决了。非线性科学只考虑各门学科中有关非线性的共性问题,特别是那些无法从线性模型稍加修正(比如摄动理论)还可解决的问题,再加上它自身理论发展所需要的一些概念方法等,这才是非线性科学的研究对象。共性很多地方表现为数学规律相同,因此数学在非线性科学里起很大作用;但数学在这里只是作为一种说明共性的手段,非线性数学(如果有这样一门学科的话,但一般不赞成这样的提法)只能用来解决由于非线性共性引起的某些数学问题,而另一些非线性共性虽然确实存在,但目前还很难用数学理论来处理。非线性科学和数学有密 切关系,但不是一门数学。从学科性质说,非线性科学不是基础应用研究,而是基础性研究。钱学森1992年2月26日在科协全委会议讲话《再谈基础性研究》中说,“国家科委的基础性研究项目一共有12项,其中只有第一项是真正的基础研究,就是关于非线性科学的研究;还有一项可能是12项中排在最后,还没有定下来的,是经络研究。其他10项都是基础应用研究。”

从伽里略-牛顿(Galileo-Newton)时代开始有精确自然科学起,就碰上了非线性问题:伽里略研究过的摆和牛顿研究过的天体运动,都是非线性力学中的典型问题。19世纪经典力学两大难题——刚体定点运动和三体问题——就是上两个问题的继续,它们曾难倒了不少科学家,也因而推动了经典力学。19世纪末庞加莱(H.Poincare)正是在总结整个世纪这方面进展的基础上,提出不少新的理论和方法,当前非线性科学中的很多概念和思想,都本源于庞加莱。可以说非线性科学应当从20世纪初庞加莱开始算起,20世纪上半叶促进非线性科学发展的,有数学中的微分方程定性理论和无线电技术所需要的非线性线路理论,它们的结合引起“非线性振动理论”这一分支的成长。近二三十年非线性科学则又由于计算机的广泛引用而更兴旺起来,计算机不仅是数值计算的工具,也为非线性现象和理论分析提供了新的思想,促进这种发展的,还有数学中动力[学]系统理论的成长,以及统计物理学中不少成果,如重正化理论。非线性科学的研究范围究竟有多大,目前没有共同的标准。比如,近年来在学术界颇有影响的几“论”——普里高津(I.Prigogine)的耗散结构论,哈肯(H.Haken)的协同论,以及托姆(R.Thom)的突变论,也有人认为应算属于非线性科学。确实,这三“论”中许多定量的分析、一些概念和方法(如分岔(bifurcation)、自组织(self-organization)、图型(pattern)、分数维等),是和非线性科学相同的。但是,这几“论”还有不少内容是企图说明某些更一般的、涉及自然界甚至社会现象的普遍规律,有些则是带有哲理性或思辨性的论断。后面这些,我们宁愿不把它算在非线性科学范围内。非线性科学中,应该包括哪些可以有定量分析、精确计算、数学理论或实验研究的部分,大家的看法也并不一致,但一般认为,以下三项内容是它的不可少的组成成分或者是它的主体:孤立波(soliton),分形 (fractal),混沌(chaos)。

孤立波,以及相应的孤立子的研究,是这三者中发展较早的一个。当然它的发现可以追溯到 19世纪,即使是对它的理论和实验研究,在20世纪50-60年代也已较多。到今天,除了沿它自身体系发展外,由于它在数学处理上已取得不少经验,我们指望从而得到了解其他非线性现象中图型形成的机理。比如,有空间传播性能的波形不变的非线性现象,可以认为是系统中由于自组织而“降维”,在数学上和非线性振动中的所谓同宿解有关。对其他非线性现象的理解可能从孤立波已有成果得到借鉴。

分形和不规则形状的几何有关。人们早就熟悉从规则的实物抽象出诸如圆、直线、平面等几何概念,芒德波罗(B.B.Mandelbrot)则对曲曲弯弯的海岸线、棉絮团似的云烟找到合适的几何学描述方法——分形。早期概念中的分形要求整体和它的各个局部都相似,即具有“自相似性”(self-similarity)。正如天下没有绝对圆的东西、几何学里的圆存在于数学家脑袋中一样,完全自相似的分形也只是一种数学抽象。当今概念中的分形(多重分形 (multifractals))对自相似性作了适当的修正和推广,使分形更能接近现实的事物。这套几何工具在处理许多非线性现象时是很有效的。分形理论开始是在各种物理或真实例子里寻找应用,后来人们则进一步研究那些具有分形几何特征的事物具有什么样的物理规律,研究分形形状的事物是如何随时间演化的。分形理论出现较晚,它的数学准备不象孤立波那样充分,目前它的数学理论和实际应用之间距离还较大,有些数学概念还得从头重新建立。比如,微积分里导数是和光滑曲线的斜率相联系的,对于曲曲弯弯海岸线那样的曲线,导数又怎样定义?如果象微分积分那样的操作都没有,那就很难做进一步的定量的研究。分形数学和分形物理的结合还刚开始。

混沌指一种貌似无规的运动,但支配它这种运动的规律却可用确定型的方程来描述。上面提到的庞加莱在总结天体力学中的问题时,已经对这种现象有了认识。到20世纪50年代,有些物理学家(如玻恩(M.Born))也已明确知道经典力学中会有长期动态的不可预测性。但混沌现象和理论开始受到重视,一般认为契机于60年代两件事。一是罗仑兹(E.Lorenz)在天气预报方程的研究中发现,尽管描述用的方程是确定性的,天气长期动态却是不可预测的。另一是,几位数学家证明了有关经典力学动态的一个定理,即现在按他们的姓称谓的卡姆(KAM)理论。这两件事也分别代表混沌理论两类对象和两种方法:罗仑兹的对象是耗散系统(这类系统和周围环境有联系、有交往,它们在自然和工程中都有),而卡姆的对象是保守系统(当作是孤立的、封闭的,它们在天体研究和统计物理中常见)。罗仑兹依靠的是数值计算,卡姆用的是严格数学推理,这两种方法在混沌理论研究里都是必不可少的。当前混沌理论所面临的数学情况比分形理论好些,但不如孤立波。现有的数学有的对混沌理论很起作用,也有些问题则还没有找到称手的数学工具。

以上三项内容是彼此联系着的,也还和其他问题有关。当一个系统或事物里有可调的参量( 设参量自身不参与随时间变化),参量不同会引起系统长期动态发生什么根本的(定性)变化,这是“分岔理论”所关心的问题。当参量变化跨越某些临界值(叫做分岔点),系统将有根本的转变,比如孤立波失稳了,或者一种分形结构变化了,混沌过程变成周期振荡了,等等。再有,如果在一系统或事物的演化中,从时间过程看有混沌,而在空间分布上又有变化着的分形图型,就得时空联系起来研究图型的动力学。正是本着这样的观点,在《非线性科学》这个重大项目里的各个课题,是既有分工又有联系。

在《非线性科学》项目里目前定下的课题有15个,分两类。一类是研究已明确各类非线性系统所共有的那些问题,如上面提到的内容。另一类是某几个特殊的非线性系统,如等离子体、流体力学中的湍流、生命科学中个别的问题。研究这些“个性”,目的是为了更好地了解 “共性”,或者发现一些新的“共性”。第一类的9个课题是:1)可积系统的数学理论,2) 孤[立]子实验与物理特性,3)耗散系统混沌的深入研究,4)保守系统的混沌行为,5)量子混沌,6)混沌实验研究,7)分形的数学理论,8)分形的物理机理,以及9)非线性发展方程描述的无穷维系统。属于第二类的有6个课题:10)时空离散系统的基本机理,11)随机力对非线性系统的作用,12)湍流的动力学途径研究,13)生命系统中若干非线性现象,14)等离子体中相干结构、混沌与湍流相互关系的研究,以及15)固态物质损伤演化的非线性动力学。在经费分配方面,第一类和第二类大概是7比3。参加这一重大项目的研究人员,主要来自高等院校和中科院各研究所,也有来自国防科工委系统的研究所,研究人员的专业有物理学、数学、和力学。今后随着研究工作的进展,课题的设置和人员的安排也会有所调整。
回复
分享到:

使用道具 举报

发表于 2005-8-28 11:18 | 显示全部楼层

什么是混沌学

     1972年12月29日,美国麻省理工学院教授、混沌学开创人之一E.N.洛伦兹在美国科学发展学会第139次会议上发表了题为《蝴蝶效应》的论文,提出一个貌似荒谬的论断:在巴西一只蝴蝶翅膀的拍打能在美国得克萨斯州产生一个陆龙卷,并由此提出了天气的不可准确预报性。时至今日,这一论断仍为人津津乐道,更重要的是,它激发了人们对混沌学的浓厚兴趣。今天,伴随计算机等技术的飞速进步,混沌学已发展成为一门影响深远、发展迅速的前沿科学。
    一般地,如果一个接近实际而没有内在随机性的模型仍然具有貌似随机的行为,就可以称这个真实物理系统是混沌的。一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。而一些动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件。而对初始条件的敏感的依赖性也可作为一个混沌的定义。
      与我们通常研究的线性科学不同,混沌学研究的是一种非线性科学,而非线性科学研究似乎总是把人们对“ 正常”事物“正常”现象的认识转向对“反常”事物“反常”现象的探索。例如,孤波不是周期性振荡的规则传播;“多媒体”技术对信息贮存、压缩、传播、转换和控制过程中遇到大量的“非常规”现象产生所采用的“非常规”的新方法;混沌打破了确定性方程由初始条件严格确定系统未来运动的“常规”,出现所谓各种“奇异吸引子”现象等。 </P>        混沌来自于非线性动力系统,而动力系统又描述的是任意随时间发展变化的过程,并且这样的系统产生于生活的各个方面。举个例子,生态学家对某物种的长期性态感兴趣,给定一些观察到的或实验得到的变量(如捕食者个数、气候的恶劣性、食物的可获性等等),建立数学模型来描述群体的增减。如果用 Pn表示n代后该物种极限数目的百分比,则著名的“罗杰斯蒂映射”:Pn+1=kP(1-Pn(k是依赖于生态条件的常数)可以用于在给定Po,k条件下,预报群体数的长期性态。如果将常数k处理成可变的参数k,则当k值增大到一定值后, “罗杰斯蒂映射”所构成的动力系统就进入混沌状态。最常见的气象模型是巨型动力系统的一个例子:温度、气压、风向、速度以及降雨量都是这个系统中随时间变化的变量。洛伦兹(E.N.Lorenz)教授于1963年《大气科学》杂志上发表了“决定性的非周期流”一文,阐述了在气候不能精确重演与长期天气预报者无能为力之间必然存在着一种联系,这就是非周期性与不可预见性之间的关系。洛伦兹在计算机上用他所建立的微分方程模拟气候变化的时候,偶然发现输入的初始条件的极细微的差别,可以引起模拟结果的巨大变化。洛伦兹打了个比喻,即我们在文首提到的关于在南半球巴西某地一只蝴蝶的翅膀的偶然扇动所引起的微小气流,几星期后可能变成席卷北半球美国得克萨斯州的一场龙卷风,这就是天气的 “蝴蝶效应”。
       混沌不是偶然的、个别的事件,而是普遍存在于宇宙间各种各样的宏观及微观系统的,万事万物,莫不混沌。混沌也不是独立存在的科学,它与其它各门科学互相促进、互相依靠,由此派生出许多交叉学科,如混沌气象学、混沌经济学、混沌数学等。混沌学不仅极具研究价值,而且有现实应用价值,能直接或间接创造财富。
混沌学的前途不可限量。
发表于 2005-8-28 11:18 | 显示全部楼层
什么是分形学

谁创立了分形几何学?

    1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何建立以后,很快就引起了许多学科的关注,这是由于它不仅在理论上,而且在实用上都具有重要价值。
分形几何与传统几何相比有什么特点:
    ⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
    ⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随即现象的,还有一些是用来描述混沌和非线性系统的。
什么是分维?
    在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以梢加推广,认为点是零维的,还可以引入高维空间,但通常人们习惯于整数的维数。分形理论把维数视为分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。
    分维的概念我们可以从两方面建立起来:一方面,我们首先画一个线段、正方形和立方体,它们的边长都是1。将它们的边长二等分,此时,原图的线度缩小为原来的1/2,而将原图等分为若干个相似的图形。其线段、正方形、立方体分别被等分为2^1、2^2和2^3个相似的子图形,其中的指数1、2、3,正好等于与图形相应的经验维数。一般说来,如果某图形是由把原图缩小为1/a的相似的b个图形所组成,有:              a^D=b,     D=logb/loga
的关系成立,则指数D称为相似性维数,D可以是整数,也可以是分数。另一方面,当我们画一根直线,如果我们用0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为1(大于0、小于2)。与此类似,如果我们画一个Koch曲线,其整体是一条无限长的线折叠而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是0(此曲线中不包含平面),那么只有找一个与Koch曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于1、小于2,那么只能是小数(即分数)了,所以存在分维。其实,Koch曲线的维数是1.2618……。
Fractal(分形)一词的由来
    据曼德勃罗教授自己说,fractal一词是1975年夏天的一个寂静夜晚,他在冥思苦想之余偶翻他儿子的拉丁文字典时,突然想到的。此词源于拉丁文形容词fractus,对应的拉丁文动词是frangere(“破碎”、“产生无规碎片”)。此外与英文的fraction(“碎片”、“分数”)及fragment(“碎片”)具有相同的词根。在70年代中期以前,曼德勃罗一直使用英文fractional一词来表示他的分形思想。因此,取拉丁词之头,撷英文之尾的fractal,本意是不规则的、破碎的、分数的。曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形。
分形的定义
    曼德勃罗曾经为分形下过两个定义:    (1)满足下式条件
           Dim(A)&gt;dim(A)的集合A,称为分形集。其中,Dim(A)为集合A的Hausdoff维数(或分维数),dim(A)为其拓扑维数。一般说来,Dim(A)不是整数,而是分数。
    (2)部分与整体以某种形式相似的形,称为分形。    然而,经过理论和应用的检验,人们发现这两个定义很难包括分形如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特性来加以说明。对分形的定义也可同样的处理。
    (i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
    (ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。
    (iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。
    (iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。
    (v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。
为什么要研究分形?
   首先,分形形态是自然界普遍存在的,研究分形,是探讨自然界的复杂事物的客观规律及其内在联系的需要,分形提供了新的概念和方法。    其次,分形具有广阔的应用前景,在分形的发展过程中,许多传统的科学难题,由于分形的引入而取得显著进展。
    分形作为一种新的概念和方法,正在许多领域开展应用探索。80年代初国外开始的“分形热”经久不息。美国著名物理学家惠勒说过:今后谁不熟悉分形,谁就不能被称为科学上的文化人。
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-20 22:33 , Processed in 0.054991 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表