|
function [bp,wf]=gausspoint(n)
%%%计算n阶高斯点以及权系数
% This function computes Gauss base points and weight factors
% using the algorithm given by Davis and Rabinowitz in 'Methods
% of Numerical Integration', page 365, Academic Press, 1975.
bp=zeros(n,1); wf=bp; iter=2; m=fix((n+1)/2); e1=n*(n+1);
mm=4*m-1; t=(pi/(4*n+2))*(3:4:mm); nn=(1-(1-1/n)/(8*n*n));
xo=nn*cos(t);
for j=1:iter
pkm1=1; pk=xo;
for k=2:n
t1=xo.*pk; pkp1=t1-pkm1-(t1-pkm1)/k+t1;
pkm1=pk; pk=pkp1;
end
den=1.-xo.*xo; d1=n*(pkm1-xo.*pk); dpn=d1./den;
d2pn=(2.*xo.*dpn-e1.*pk)./den;
d3pn=(4*xo.*d2pn+(2-e1).*dpn)./den;
d4pn=(6*xo.*d3pn+(6-e1).*d2pn)./den;
u=pk./dpn; v=d2pn./dpn;
h=-u.*(1+(.5*u).*(v+u.*(v.*v-u.*d3pn./(3*dpn))));
p=pk+h.*(dpn+(.5*h).*(d2pn+(h/3).*(d3pn+.25*h.*d4pn)));
dp=dpn+h.*(d2pn+(.5*h).*(d3pn+h.*d4pn/3));
h=h-p./dp; xo=xo+h;
end
bp=-xo-h;
fx=d1-h.*e1.*(pk+(h/2).*(dpn+(h/3).*(d2pn+(h/4).*(d3pn+(.2*h).*d4pn))));
wf=2*(1-bp.^2)./(fx.*fx);
if (m+m) > n,
bp(m)=0;
end
if ~((m+m) == n),
m=m-1;
end
jj=1:m;
n1j=(n+1-jj);
bp(n1j)=-bp(jj);
wf(n1j)=wf(jj); |
|