function [v,w,zeta]=vbr_sf(m,d,k)
%vbr_sf vbr_sf(m,d,k)
% [v,w,zeta]=vbr4(m,d,k)
% function vbr_sf finds the mode shapes and natural frequencies of
% a linear second order matrix equation.
% [v,w]=vbr_sf(m,k) finds the mode shapes and natural frequencies
% for the undamped case.
if nargin==2
k=d;
[v,w]=eig(m\k);
w=sqrt(w);
end
if nargin==3
if norm(d/m*k-k/m*d) < 1e-8*norm(k/m*d)
%disp('Damping is proportional, eigenvectors are real.')
[v,w]=eig(m\k);
w=sqrt(w);
zeta=(v'*m*v)\(v'*d*v)/2/w;
else
%disp('Damping is non-proportional, eigenvectors are complex.')
a=[0*k eye(length(k));-m\k -m\d];
[v,w1]=eig(a);
w=abs(w1);
zeta=-real(w1)/w;
end
end
w=diag(w);zeta=diag(zeta); |