1.3.2瞬轴空间位置的变化
见图6,18位上质点运动到20位,翻转速度变为0,转角为20o,此时瞬轴从19-1转到20-2位,转角为10o;
17位上质点运动到21位,翻转速度变为0,转角为40o,此时瞬轴从19-1转到21-3位,转角为20o;
16位上质点运动到22位,翻转速度变为0,转角为60o,此时瞬轴从19-1转到22-4位,转角为30o;
同理,2位上质点运动到36位,翻转速度变为0,转角为340o,此时瞬轴从19-1转到36-18位,转角为170o;
1位上质点经过加速和减速,运动一周时翻转速度变为0,转角为360o回到原位,此时瞬轴从19-1转到1-19位,转角为180o,与19-1(也是水平翻转轴)重合。
通过上述分析我们可以归纳如下结论:瞬轴的位置总是落在翻转速度为0的一条直线上,从这条线在圆环上的位置变化看,它随着质点的运动产生了相应的角位移,我们把瞬轴在圆环上的角位移称为空间回转,其回转角速度是自转角速度的1/2。
1.3.3瞬轴的空间回转
圆环上质点的瞬时翻转加速度的分布,是以翻转轴上下对称分布的,在翻转轴线上所有点的翻转加速度为0;圆环上的瞬时翻转速度的分布,则与之不同,它不以翻转轴为对称,而是以瞬轴对称分布,瞬轴上的所有质点的翻转速度为0。
见图6,A点转到N点经过一个加速过程,从N点经过同样时间转到A',又经过一个减速过程。从图中曲线包围的黄色面积知,二者面积相等。在t轴上是正向翻转加速度作用下的翻转速度的增量;t轴下是反向翻转加速度作用下的翻转速度负增量,至A'时加速和减速时间相同,两黄色面积相同,翻转速度正增量和负增量相同,因此翻转速度变为0。此时原NP上的瞬轴将落到OA'上,用ψ表示瞬轴转角,w s表示瞬轴瞬时角速度。则:
ψ=∠NOA',∠AOA'=wt=2∠NOA'。所以
....…………………………………………..1.2
同样我们可从B点转到B'点的翻转速度的变化,得到同样的结论。
从这个式子可以看出瞬轴在圆环平面内,相对于圆环按照特定的规律旋转,并且其旋转角速度恰为圆环自转角速度的1/2,并做匀速圆周运动;瞬轴旋转一周,圆环旋转两周。
设空间瞬时旋转轴在圆环平面内的角速度为ws,则:
…………………………………………………1.3
1.4运动过程中的能量转换和周期性变化
在这里我们把陀螺转子的自转所具有的动能,视为系统固有内能,要和因外力作用所产生的能量变化加以区分。下面针对外力作用下的能量变化进行分析。
我们认识了瞬轴的形成机制和运动规律,瞬轴的旋转所形成的角动量,随外力作用,在下降过程中不断增大,这就是势能向动能的转化过程;这个瞬轴角动量作用于质心,通过陀螺半轴和定点O之间形成一个转矩,产生相对于定点的空间旋转运动。由于瞬轴在圆环上的相对旋转,瞬轴从水平转为倾斜时,瞬轴角动量竖直(Z'轴或Z轴)方向的分量将促使质心做水平偏转;瞬轴角动量水平(水平翻转轴或Y'轴)方向的分量促使质心下降和上升运动。当瞬轴相对于圆环呈竖直状态时,瞬轴角动量的水平分量为0,此时质心不再下降而达到最低点,动能不再增加。之后,瞬轴在圆环平面上较以前呈反向倾斜,随着瞬轴角动量方向改变,瞬轴角动量的水平分量方向以前述相反,又转入上升运动并继续偏转,动能开始向势能转化,直到圆环质心回升到原来高度,瞬轴相对于圆环呈水平状态,圆环上所有质点的翻转速度为0,瞬轴上角动量消失,动能消失,停止上升和偏转。此时,圆环完成一个自转周期,瞬轴回转完成半个周期。
我们把圆环质心的下降和上升,称为章动;把质心的水平偏移称为进动。章动和进动是同一个运动的两个分量,二者同时产生,同时消失,具有同一个周期。在以下分析中,把二者的周期,统称为章动周期。圆环完成一个自转周期,同时完成一个章动周期;瞬轴完成一个回转周期,需要2个自转周期,完成2个章动周期。
1.5瞬轴与空间回转角动量
前面针对瞬轴在圆环上的回转进行了详细分析,通过对瞬轴回转的分析,我们就不难理解其在空间坐标系下的运动形式,它即有自身旋转又有空间回转。瞬轴的旋转必然产生角动量,这个角动量总是指向瞬轴的一端。在空间坐标系下看陀螺的整体运动,瞬轴角动量的方向随着瞬轴的位置改变而改变。角动量的作用体现在过半轴且垂直于瞬轴的平面上,它迫使受力点(陀螺质心)在这个平面上旋转。瞬轴角动量在圆环上做相对回转,它同时又要带动陀螺半轴相对于系统定点O做下降旋转和平移旋转,继而又上升旋转和平移旋转。因此,在以下分析中我们把这个角动量称为空间回转角动量,简称回转角动量。回转角动量的空间状态取决于瞬轴的状态(参见图7)。
上述分析是以忽略厚度的平面圆环为模型分析的,我们把这个圆环平面称为自转中平面。如果考虑圆环厚度,则以过圆环质心的平面为自转中平面;如果分析对象为球体或其它轴对称体,则取过质心且与自转轴垂直的平面为自转中平面。空间瞬轴始终位于自转中平面上,瞬轴是整个系统绝对运动的瞬时体现。
总之,以简化陀螺模型为例,陀螺由圆盘和半轴组成。半轴的一端点为定点O,陀螺转子圆盘高速且匀速自转;外力作用,使陀螺产生绕O点的旋转;圆盘产生相对翻转;相对翻转与自转合运动产生瞬轴的空间翻转;空间瞬时翻转,同时瞬轴在圆环上相对旋转,形成回转角动量。我们把回转角动量对于质心的作用,并推动质心产生新的运动的现象称为陀螺效应。回转角动量对圆环质心的推动作用称为陀螺力。陀螺力推动陀螺质心通过半轴R完成章动和进动的整个过程。
1.6自转角、章动角和进动角空间关系的确定
水平翻转轴是圆环受外力作用后直接产生的,它始终位于自转中平面和水平面交线上;空间瞬时回转轴是因水平翻转导致圆环上质点翻转速度的不断变化而形成的,它同样始终位于自转中平面上,瞬轴与水平翻转轴始终是共面的。又自转角起始边是从水平翻转轴开始的,水平翻转轴始终位于水平面即O-XY平面上,所以陀螺转子圆环自转角的始边必在水平翻转轴上,亦即位于O-XY平面上,所以水平翻转轴是陀螺转子圆环的自转角的始边。进动角是陀螺水平角位移形成的,水平翻转轴在O-XY水平面上的角位移就是进动角的终边(见图7所示)。
章动角就是陀螺半轴离开水平面的角度。
整个陀螺系统运动情况见如下三维图解(见图7),该图为圆环自转wt=p时的情景。A点自OY轴开始运动,A'点落在水平翻转轴另一端,也在O-XY平面上,此时瞬轴与水平翻转轴正交。进动角在O-XY平面上,即水平翻转轴离开OY轴的夹角;章动角即半轴相对O-XY平面的下降角,或旋转中平面离开OZ轴的夹角。(见下篇)
[ 本帖最后由 白果树又来了 于 2007-1-26 21:36 编辑 ] |