声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 4081|回复: 2

[动力学和稳定性] 汽轮机、转动机械振动实例

[复制链接]
发表于 2005-5-17 08:17 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
本帖最后由 VibInfo 于 2016-4-14 15:38 编辑

动力系统的保结构算法的现状与未来(一)


  

对称的几何观点是力学研究中一个非常重要的视角,从基本的原理公式,到具体的应用,不论是早期的创立者Newton、Lagrange、Posiion、Jacobi和 Hamilton,还是后继续发展者Noether,、Rieman、Ruth、Kelvin、Cartan,特别是现代学者Arnold、Guillemin、Moser、Smal、Souriau、Sternberg、Marsden都一致强调了几何方法和力学研究的密不可分的关系,其中最重要的例子是Alexander Rowan Hamilton提出的力学定理,它使人们可以用更深的几何工具---微分流形来理解和研究刚体体系及太阳系等复杂系统的力学性质;可以用相应的Hamilton函数的对称性的概念来理解和研究诸如能量、线性动量与角动量等Hamilton系统的守恒性质。所以,结合对称的观点和几何的方法建立起了包括Lagrangian力学体系和Hamiltonian力学体系的几何力学的理论在当代科学技术的不断进步过程中起着非常重要的意义。
回复
分享到:

使用道具 举报

 楼主| 发表于 2005-5-17 08:17 | 显示全部楼层

ansys耦合场分析指南(官方指南扫描版)

本帖最后由 VibInfo 于 2016-4-14 15:38 编辑

Geometric integration is the discipline concerned with numerical discretization methods that respect qualitative features of the underlying differential equations.In a sense, geometric integration attempts to unify two worlds: the qualitative world of pure mathematics, with an emphasis on geometry, and the quantitative world of numerical analysis. Typical themes in geometric integration are


  


Symplectic methods for Hamiltonian ordinary differential equations;


  

Multisymplectic methods and Moser-Veselov integrators for Hamiltonian partial differential equations;


  

Lie-group methods, for differential equations evolving in Lie groups or on homogeneous manifolds;


  

Methods for differential equations which conserve energy, volume, angular momentum or other invariants;


  

Methods that respect laws of physics and the Stokes theorem by employing finiteelement discretization on topological complexes.


  

Although geometric integration evolves very fast, there exist a number of excellent references which are a good place to start if you wish to learn more:
1. C.J. Budd & M.D. Piggott, "Geometric integration and its applications", Technical Report,University of Bath (2002).


  

2. E. Hairer, Ch. Lubich & G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations", Springer Verlag, Berlin (2002).


  

A great deal of useful material on geometric integration can be found at the website of the Geometric Integration Interest Group of FoCM.
发表于 2005-5-17 20:53 | 显示全部楼层

[推荐]教程

本帖最后由 VibInfo 于 2016-4-14 15:38 编辑

Geometric integration is the discipline concerned with numerical discretization methods that respect qualitative features of the underlying differential equations.In a sense, geometric integration attempts to unify two worlds: the qualitative world of pure mathematics, with an emphasis on geometry, and the quantitative world of numerical analysis. Typical themes in geometric integration are


  


Symplectic methods for Hamiltonian ordinary differential equations;


  

Multisymplectic methods and Moser-Veselov integrators for Hamiltonian partial differential equations;


  

Lie-group methods, for differential equations evolving in Lie groups or on homogeneous manifolds;


  

Methods for differential equations which conserve energy, volume, angular momentum or other invariants;


  

Methods that respect laws of physics and the Stokes theorem by employing finiteelement discretization on topological complexes.


  

Although geometric integration evolves very fast, there exist a number of excellent references which are a good place to start if you wish to learn more:
1. C.J. Budd & M.D. Piggott, "Geometric integration and its applications", Technical Report,University of Bath (2002).


  

2. E. Hairer, Ch. Lubich & G. Wanner, "Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations", Springer Verlag, Berlin (2002).


  

A great deal of useful material on geometric integration can be found at the website of the Geometric Integration Interest Group of FoCM.
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-23 11:22 , Processed in 0.080472 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表