关于-网络结构和动力学
国内做这方面研究的人
刘曾荣1、周进2、王家赠1
1、 上海大学理学院数学系
2、 上海大学上海市应用数学与力学研究所
这方面的参考文献:
1. 普利高津和斯唐热,从混沌到有序:人与自然的新对话,曾庆宏和沈小峰译,上海译文出版社,上海,1987。
2. 湛垦华、沈小峰等,普利高津和耗散结构理论,陕西科学出版社,西安,1982。
3. 哈肯,高等协同论,郭冶安译,科学出版社,北京,1989。
4. 詹姆斯,混沌:开创新科学,张淑誉译,上海译文出版社,上海,1990。
5. Zhang. S.Y, Bibliography on chaos, In: Hao. B.L, ed, Direction in Chaos, Publishing Co Pte Ltd, Singapore, 1991.
6. Ott. E, Grebogi. C and York. J A, Controlling chaos, Phys.Rev.Lett., 64, p 1196-1199, 1990.
7. Pecora. L.M and Carroll. T.L, Synchronization in chaotic collective systems, Phys.Rev.Lett., 64, p 821-824, 1990.
8. Hopfield. J.J, Neural networks and physical systems with emergent collective computertational abilities, Proc.Nall.Acad.,Sci., 79, p937-946, 1982.
9. 焦李成,神经网络系统理论,西安电子科技大学出版社,西安,1990。
10. 米歇尔.沃尔德罗普,混沌:诞生于秩序与混沌边缘的科学,陈玲译,生活、读书、新知三联书店,上海,1997。
11. 弗里德里希,混沌与秩序:生物系统的复杂结构,柯志阳和员彤译,上海科技教育出版社,上海,2000。
12. 约翰.霍兰,隐秩序:适应性造就复杂性,周晓牧和韩晖译,上海科技教育出版社,上海,2000。
13. R. Albert and A.L.Barabasi, Statistical mechanics of complex networks, Rev.Modern Physics, 74, p 48-97, 2002.
14. M. E. J. Newman, The structure and function of complex networks, SIAM Review, 45, p 167-256, 2003.
15. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D. U. Hwang, Complex networks: Structure and dynamics, Physics Report, 424,p175-308, 2006.
16. O.Mason and M. Verwoerd, Graph theory and networks in biology, p.1-52, (传给我时,文章第一页写明完成日期为2006.4.6).
17. K. I. Goh, E. Oh, B. Kahng and D. Kim, Betweenness centrality correlation in social networks, Phys.Rev.E, 67, 017101, 2003.
18. M. E. J. Newman, Mixing pattern in networks, Phys.Rev.E., 67, 026126, 2003.
19. P. Erdos and A. Renyi, On random graphs, Publicationes Mathematicae, 6, p 290-297, 1959.
20. P Erdos and A. Renyi, On the evolution of random graphs, Publications of the Mathematical Institute of the Hungarian Academy of Science, 5, p 17-61, 1960.
21. D. J. Watt and S. H. Strogatz, Collective dynamics of small-world networks, Nature, 393, p440-442, 1998.
22. R. Monasson, Diffusion,localization and dispersion relations on small-world lattices, Eur. Phys. J. B., 12, p555-567, 1999.
23. M. E. J. Newman and D. J. Watt, Renormalization group analysis of the small-world network model, Phys. Lett. A, 263, p341-346, 1999.
24. M. E. J. Newman, C. Moore and D. J. Watt, Mean-field solution of the small-world network model, Phys.Rev.Lett., 84, p3201-3204, 2000.
25. A. Barrat and M. Weigt, On the properties of small-world networks, Eur. Phys. J. B., 13, p547-560, 2000.
26. A. L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286, p509-512, 1999.
27. R. Albert and A. L. Barabasi, Dynamics of complex systems: Scaling laws for the period of Boolean networks, Phys.Rev.Lett., 84, p5660-5663, 2000.
28. R. Albert and A. L. Barabasi, Topology of evolving networks:local events and universality, Phys.Rev.Lett., 85, p5234-5237, 2000.
29. P. L. Krapivsky, S. Redner and F. Leyvraz, Connectivity of growing random networks, Phy.Rev.Lett, 85, p4629-4632, 2000.
30. S. N. Dorogovtsev and J. F. F. Mendes, Effect of the accelerating growth of communications networks on their structure, Phys.Rev.E, 63, 025101, 2001.
31. S. N. Dorogovtsev and J. F. F. Mendes, Scaling behaviour of developing and decaying networks, Europhys.Lett., 52, p33-39, 2000.
32. P. L. Krapivsky and S. Redner, A statistical physics perspective on Web growth, Computer Networks, 39, p261-276, 2002.
33. B. Tadic, Dynamics of directed graphs: The World-Wide Web, Physica A, 293, p273-284, 2001.
34. G Bianconi and A. L. Barabasi, Bose-Einstein condensation in complex networks, Phys.Rev.Lett, 86, p5632-5635, 2001.
35. A. Vazquez et al, Modeling of protein interaction networks, ComPlexUs, 1, p38-46, 2003.
36. R. Sole et al., A model of large scale proteome evolution, Advances in Complex Systems, 5, p43-54, 2002.
37. F. Chung and L. Lu, Coupling online and offline analyses for random power graphs, Internet Mathematics, 1, p409-461, 2004.
38. A. Bhan, D. Galas and T. G. Dewey, Non-negative matrices in the mathematical sciences, SIAM classics in applied mathematics, P?1994.
39. J. Berg, M. Lassing and A. Wagner, Structure and evolution of protein interaction networks: a statistical model for link dynamics and gene duplications, BMC Evolutionary Biology, 4, p51, 2004.
40. R. Milo et al., Network motifs: simple building blocks of complex networks, Science, 298, p824-827, 2002.
41. M. Newman, Fast algorithm for detecting community structure in networks, Phys.Rev.E, 69, 066133, 2004.
42. M. Newman and M.Girvan, Finding and evaluating community structure in networks, Phys.Rev.E, 69, 026113, 2004.
43. R.Milo et al., Superfamilies of evolved and designed networks, Science, 303, p1538-1542, 2004.
44. F. Radicchi et al., Defining and identifying communities in networks, Proc.Nat.Acad.Sci., 101, p2658-2663, 2004.
45. E. Ziv, M. Middendorf and C. Wiggins, An information-theoretic approach to network modularity, Phys.Rev.E, 71, 046117, 2005.
46. S. Yook, Z. Oltvai and A. Barabasi, Functional and topological characterization of protein interaction networks, Proteomics, 4, p928-942, 2004.
47. S. Wuchty, Z. Oltvai and A. Barabasi, Evolutionary conservation of motif constituents in the yeast protein interaction network, Nature Genetics, 35, p176-179, 2003.
48. E. Segal et al., Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nature Genetics, 34, p166-176, 2003.
49. N. Przulj, D Wigle and I. Jurisica, Functional topology in a network of protein interactions, Bioinformatics, 20, p340-348, 2004.
50. N. Kashtan et al., Topological generalizations of network motifs, Phys.Rev.E, 70, 031909, 2004.
51. S. Fortunato, V. Latora and M. Marchiori, Method to find community structures based on information centrality, Phys.Rev.E, 70, 056104, 2004.
52. M. Girvan and M.Newman, Community structure in social and biological networks, Proc.Nat.Acad.Sci., 99, p7821-7826, 2002.
53. A. Enright, S. Van Dongen and C. Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, 30, p1575-1584, 2002.
54. Z. Bar-Joseph et al., Computational discovery of gene modules and regulatory networks, Nature Biotechnology, 21, p1337-1342, 2003.
55. 汪小帆、李翔、陈关荣:复杂网络—理论与应用. 清华大学出版社,2006.
56. C. W. Wu and L. O. Chua, Application of graph theory to the synchronization in an array of coupled nonlinear oscillators. IEEE Trans. Circuits & Systems–I 42, p494–497, 1995.
57. C. W. Wu and L. O. Chua. Synchronization in an array of linearly coupled dynamical systems. IEEE Trans. Circuits & Systems–I 42, p430-447, 1995.
58. C. W. Wu. Synchronization in networks of nonlinear dynamical systems via a directed graph. Nonlinearity 18, p1057-1064, 2005.
59. X. F. Wang and G. R. Chen. Synchronization in small-world dynamical networks. Int. J. Bifurcation & Chaos 12, p187-192, 2002.
60. X. F. Wang and G. R. Chen. Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits & Systems–I 49, p54-62, 2002.
61. X. Li and Chen G. R. Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint. IEEE Trans. Circuits & Systems-I 50, p1381-1390, 2003.
62. J. H. Lu, X. H. Yu, G. R. Chen, and D. Z. Cheng Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circuits & Systems-I 51, p787-796, 2004.
63. Z. Li and G. R. Chen, Global synchronization and asymptotic stability of complex dynamical networks. IEEE Trans. Circuits & Systems–II 53, p28-33, 2006.
64. L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, p2109, 1998.
65. M. Barahona and L. M. Pecora. Synchronization in small-world systems. Phys. Rev. Lett. 89, p054101, 2004.
66. W. L. Lu and T. P. Chen. New approach to synchronization analysis of linearly coupled ordinary differential equations. Physics D 213, p214-230, 2006.
67. C. G. Li and G. R.Chen. Synchronization in general complex dynamical networks with coupling delays. Physica A 343, p236-278, 2004.
68. J. Zhou and T. P. Chen, Synchronization in general complex delayed dynamical networks, IEEE Trans. Circuits & Systems -I, 53, p733-744,2006.
69. 周进, 陈天平和刘美春, 具有脉冲效应的复杂动力网络模型, 第二届全国复杂动态网络学术论坛论文集,中国高等科学技术中心出版社,170(I), p231-235,2005。
70. G. R. Chen, J. Zhou and S. Celikovsky, On LaSalle’s invariance principle and its application to robust synchronization of general vector Lienard equation, IEEE, Trans, Automat, Control, 49, p869-874. 2005.
71. J. Xu and K. W. Chung, “Effects of time delayed position feedback on van Pol-Duffing oscillator,” Physica D, 180, p17-39, 2003.
72. G. R. Chen, J. Zhou and Z. G. Liu, Global synchronization of coupled delayed neural networks and applications to chaotic CNN models, Int. J. Bifur & Chaos, 14: p2229-2240, 2004.
73. J. Zhou, T. P. Chen and L, Xiang, Robust synchronization of coupled delayed recurrent neural networks, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, New York, 3173: p144-149, 2004.
74. J. Zhou, T. P. Chen and L, Xiang, Robust synchronization of delayed neural networks based on adaptive control and parameters identification, Chaos, Solitons, Fractals, 27: p905-913, 2006.
75. J. Zhou, T. P. Chen and L, Xiang, Adaptive synchronization of delayed neural networks based on parameters identification, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, New York, 3496: p308-313, 2005.
76. J. Zhou, T. P. Chen L, Xiang and M. C. Liu, Global synchronization of impulsive coupled delayed neural networks, Lecture Notes in Computer Science, Springer-Verlag, Berlin Heidelberg, New York, 3971: p303-308, 2006.
77. J. Zhou, T. P. Chen and L, Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication, Circuits, Systems and Signal Processing, 25: p599-613, 2005.
78. Y. Kuramoto, In H. Arakai, editor, International Symposium on Mathematical Problems in Theoretical Physics, Volume 39 of Lecture Notes in Physics, Springer, New York, 1975.
79. J. A. Acebron, L. L. Bonilla, C. J. Perez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, p137-185, 2005.
80. S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, p1-20, 2000.
81. H. Hong, H. Parkand M. Y. Choi, Collective synchronization in spatially extended systems of coupled oscillators with random frequencies, Phys.Rev.E, 72, 036217, 2005.
82. H. Hong, B. J. Kim, M.Y. Choi and H. Park, Factors that predict better synchronizability on complex networks, Phy.Rev.E., 69, 067105, 2004.
83. H. Hong, M. Y. Choi and B.J.Kim, Synchronization on small-world networks, Phys.Rev.E., 65, 026139, 2002.
84. Y. M. Moreno Vega, M. Vasquez-Prada and A. F. Pacheco, Fitness for synchronization of network motifs, Physica A, 343, p279-287, 2004.
85. F. Liljeros et. al., The Web of Human sexual contact, Nature, 411, p907, 2001.
86. R. Pastor-Satorras et.al, Epidemic spreading in scale-free networks, Phys.Rev.Lett., 86, p3200-3203, 2002
87. R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks, Phys.Rev.E., 64, 066112, 2001.
88. R. Pastor- Satorras, and A. Vespignani, Epidemic dynamics in finite size scale-free networks, Phys.Rev.E., 65, 035108, 2002.
89. M. Boguna, R. Pastor-Satorras and A.Vespignani, Absence of epidemic threshold in scale-free networks with degree correlations, Phys.Rev.Lett., 90, 028701, 2003.
90. R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1991.
91. R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991.
92. H. Hethcote, The mathematics of infectious diseases, SIAM. Review, 42(3), p599-653, 2000.
93. D. Hwang, et.al, Thresholds for epidemic outbreaks in finite scale- free networks, Mathematical Bioscience and Engineering, 2, p317-327, 2005.
94. A. Enright, S. Van Dongen and C.Ouzounis, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Research, 30, p1575-1584, 2002.
95. M. Boguna and R. Pastor-Satorras, Epidemic spreading in corrected complex networks, Phys.Rev.E., 66, 047104, 2002.
96. Z. Dezso and A. Barabasi, Halting viruses in scale free networks, Phys.Rev.E., 65, 055103, 2002.
97. R Pastor-Satorras and A.Vespignani, Immunization of complex networks, Phys.Rev.E., 65, 036104, 2002.
98. S. Eubank et.al., Modelling disease outbreak in realistic urban social networks, Nature, 429, p180-182, 2004.
99. N. Becker et.al., Controlling emerging infectious diseases like SARS, Mathematical Bioscience, 193, p205-221, 2005.
100. S. Shen-Orr, R. Milo, S. Mangan and U.Alon, Network motifs in the transcriptional regulatory network of Escherichia coli, Nature Genetics, 31, p64-68, 2002.
101. Y. M. Moreno Vega, M Vasquez-Prada and A F Pacheco, Fitness for synchronization of network motifs, Physica A., 343, p279-287, 2004.
102. Z. H. Ma , Z. R. Liu and G.. Zhang, A new method to realize cluster synchronization in connected chaotic network, Chaos, 16, 023103, 2006.
103. I. Belykh, V. Belykh, and M. Hasler, .Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, 195, p188-206, 2004.
104. I. Belykh, V. Belykh, and M. Hasler, Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195, p159-187, 2004.
105. Daniel J. Stilwell; Erik M. Bollt; D. Gray Roberson; Daniel J. Stilwell; Erik M. Bollt; D. Gray Roberson; Sufficient Conditions for Fast Switching Synchronization in Time-Varying Network Topologies, SIAM Journal on Applied Dynamical Systems ,5 p140-156 2006. |