Y. K. Lin 于美国佛罗里达大西洋大学应用随机研究中心
前言
非线性随机动力学系统广泛存在于自然科学、工程学及社会科学之中。例如,强震、强风、强浪等严重随机载荷可使高层建筑、大型桥梁、海洋平台等工程结构产生强烈的非线性随机振动、失稳甚至破坏,因而需要加以控制。又如,在物理、化学、生物学中,噪声对非线性动力学系统可产生多种重要效应,近20年中,物理学界对随机共振进行了大量的研究,近10年来,化学与生物学界的科学家逐渐体会到,噪声在非线性动力学系统中可起积极的建设性的作用。因此,愈来愈多的学者从事非线性随机动力学与控制的研究。
上世纪初Einstein等人对布朗运动的研究标志着随机动力学研究的开端。对非线性随机动力学的研究则始于上世纪60年代初。至上世纪90年代初,对非线性随机振动的研究基本上局限于拟线性系统与单自由强非线性系统。对随机稳定性的研究基本上局限于单自由度线性随机系统。首次通过问题的研究局限于单自由度随机系统。随机分岔研究始于上世纪80年代初,至今也基本上局限于一、二维随机系统。对随机最优控制的研究始于上世纪60年代初,至今基本上局限于线性随机系统的线性二次Gauss(LQG)控制。然而,实际的非线性随机动力学系统往往是多自由度、强非线性的。因此,迫切需要发展多自由度强非线性系统随机动力学与控制理论。但是,这是一项十分困难的任务。
近10年来,作者将非线性随机动力学与控制的研究从Lagrange体系转到Hamilton体系,将非线性随机动力学系统表示成随机激励的耗散的Hamilton系统,根据相应Hamilton系统的可积性与共振性,将系统分成不可积、可积非共振、可积共振、部分可积非共振、部分可积共振五类,提出与发展了随机激励的耗散的Hamilton系统理论,包括Gauss白噪声激励下耗散Hamilton系统的精确平稳解与等效非线性系统法、拟Hamilton系统随机平均法、拟Hamilton系统随机稳定性、随机分岔、首次穿越以及分别以振动最小、稳定度或可靠度最大为目标的非线性随机最优控制理论方法,构成了一个崭新的非线性随机动力学与控制的Hamilton理论体系的框架,特别为解决多自由度强非线性系统随机动力学与控制问题提供了一整套理论方法,得到了非线性随机动力学系统四类能量非等分精确平稳解,打破了自1933年以来一直只有能量等分解的局面。该项研究成果获得了2001年中国高校科学技术(自然科学)奖一等奖与2002年国家自然科学奖二等奖。
本书是上述研究成果的一个系统总结。为便于读者理解,前两章较详细地介绍了Hamilton系统与扩散过程,6.1中介绍了随机稳定性与随机分岔的基本概念与基本方法,8.1中介绍了随机最优控制的基本概念与基本方法,各种理论方法的论述皆配以若干应用例子。上述理论尚待完善与发展,理论的应用更需进一步研究。作者希望本书能起到抛砖引玉的作用,期待更多的学者从事这方面的研究,共同继续发展该理论及其应用。
在本书即将出版之际,作者首先要感谢美国工程院院士、美国佛罗里达大西洋大学应用随机学研究中心主任、工程中Schmidt Chair Y. K. Lin教授与美国纽约州立大学布法罗分校Samuel P. Capen 教授 T. T. Soong的鼓励与支持,作者对随机激励的耗散的Hamilton系统的研究是从访问他们期间开始的,Lin教授还特为本书作了序。感谢国家自然科学基金委员会对此项研究工作的持续资助。感谢黄志龙副教授、应祖光副教授、雷鹰博士、杨勇勤与邓茂林等,他们与作者一起发展了上述理论。感谢吴勇军与刘中华,他们协助我整理手稿与绘制插图。感谢妻子朱巧芝的理解与全力支持。感谢中国科学院科学出版基金与国家自然科学基金优秀研究成果专著出版基金的联合资助。感谢科学出版社在本书出版过程中的全力支持与帮助。
衷心欢迎读者对本书提出宝贵意见与批评指正。