声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 5336|回复: 4

[Maple] Maple的常用内部数学函数

[复制链接]
发表于 2005-9-2 13:40 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
<TABLE  height=2473 cellSpacing=0 cellPadding=0 border=1>

<TR >
<TD  vAlign=center width=67 height=34>
<P><FONT color=#ff3399>指数函数</FONT></P></TD>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>exp(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>以</FONT><FONT color=#ff3399>e为底数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=97 rowSpan=3>
<P><FONT color=#ff3399>对数函数</FONT></P></TD>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>ln(x)</FONT><FONT color=#ff3399>或log(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>自然对数,即以</FONT><FONT color=#ff3399>e为底数的对数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>log[10](x)</FONT></P>
<P><FONT color=#ff3399>或</FONT><FONT color=#ff3399>log10(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>常用对数,即以</FONT><FONT color=#ff3399>10为底数的对数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>log[a](x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>以</FONT><FONT color=#ff3399>a为底数的x的对数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=34>
<P><FONT color=#ff3399>开方函数</FONT></P></TD>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>sqrt(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>表示</FONT><FONT color=#ff3399>x的算术平方根</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=34>
<P><FONT color=#ff3399>绝对值函数</FONT></P></TD>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>abs(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>表示</FONT><FONT color=#ff3399>x的绝对值</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=199 rowSpan=6>
<P><FONT color=#ff3399>三角函数</FONT></P>
<P><FONT color=#ff3399>(自变量的单位为弧度)</FONT></P></TD>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>sin(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>正弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>cos(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>余弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>tan(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>正切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>cot(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>余切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>sec(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>正割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=34>
<P><FONT color=#ff3399>csc(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=34>
<P><FONT color=#ff3399>余割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=208 rowSpan=6>
<P><FONT color=#ff3399>反三角函数</FONT></P>
<P><FONT color=#ff3399> <P> </P></FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arcsin(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反正弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arccos(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反余弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arctan(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反正切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arccot(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反余切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arcsec(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反正割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arccsc(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反余割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=208 rowSpan=6>
<P><FONT color=#ff3399>双曲函数</FONT></P>
<P><FONT color=#ff3399> <P> </P></FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>sinh(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>双曲正弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>cosh(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>双曲余弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>tanh(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>双曲正切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>coth(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>双曲余切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>sech(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>双曲正割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>csch(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>双曲余割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=208 rowSpan=6>
<P><FONT color=#ff3399>反双曲函数</FONT></P>
<P><FONT color=#ff3399> <P> </P></FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arcsinh(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反双曲正弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arccosh(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反双曲余弦函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arctanh(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反双曲正切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arccoth(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反双曲余切函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arcsech(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反双曲正割函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arccsch(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>反双曲余割函数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=67 height=35>
<P><FONT color=#ff3399>求角度函数</FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>arctan(y,x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>以坐标原点为顶点,</FONT><FONT color=#ff3399>x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围为(<IMG src="http://www.wzz999.nease.net/new_pa239.gif"> ,<IMG src="http://www.wzz999.nease.net/new_pa240.gif"> ]</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=67 height=560 rowSpan=16>
<P><FONT color=#ff3399>数论函数</FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>igcd(a,b,c,</FONT><FONT color=#ff3399>...)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>整数的最大公约数函数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>ilcm(a,b,c,</FONT><FONT color=#ff3399>...)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>整数的最小公倍数函数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>a mod b</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求</FONT><FONT color=#ff3399>a除以b的余数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>modp(a,b)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求</FONT><FONT color=#ff3399>a除以b的正余数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>mods(a,b)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>以对称的方式求</FONT><FONT color=#ff3399>a除以b的余数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>irem(a,b)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求</FONT><FONT color=#ff3399>a除以b的余数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>irem(a,b, </FONT><FONT color=#ff3399>'q')</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求</FONT><FONT color=#ff3399>a除以b的余数,并将商存放在q中</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>iquo(a,b)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求</FONT><FONT color=#ff3399>a除以b的商</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>iquo(a,b, </FONT><FONT color=#ff3399>'r')</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求</FONT><FONT color=#ff3399>a除以b的商,并将余数存放在r中</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>ifactor(n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>因数分解,即把整数</FONT><FONT color=#ff3399>n分解成质数的乘积</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>rand()</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>产生</FONT><FONT color=#ff3399>12位的随机整数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>rand</FONT><FONT color=#ff3399>(a..b) ()</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>产生整数</FONT><FONT color=#ff3399>a到整数b之间的随机整数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>ithprime(n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求第</FONT><FONT color=#ff3399>n个质数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>nextprime(n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求比整数</FONT><FONT color=#ff3399>n大的最小质数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>prevprime(n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求比整数</FONT><FONT color=#ff3399>n小的最大质数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>isprime(n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>判断整数</FONT><FONT color=#ff3399>n是否为质数,若是,则结果为true,否则结果为false</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=67 height=35>
<P><FONT color=#ff3399>排列组合函数</FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>factorial(n)</FONT><FONT color=#ff3399>或n!</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>阶乘函数,表示n的阶乘</FONT></P></TD></TR></TABLE>
回复
分享到:

使用道具 举报

 楼主| 发表于 2005-9-2 13:40 | 显示全部楼层

回复:(sunny)Maple的常用内部数学函数

<TABLE  height=2473 cellSpacing=0 cellPadding=0 border=1>

<TR>
<TD  vAlign=center width=67 height=313 rowSpan=9>
<P><FONT color=#ff3399>数函数</FONT></P>
<P><FONT color=#ff3399> <P> </P></FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>Re(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>实部函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>Im(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>虚部函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>abs(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求复数</FONT><FONT color=#ff3399>z的模</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>argument(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>辐角函数</FONT><FONT color=#ff3399>,表示复数的z辐角, 其范围是(<IMG src="http://www.wzz999.nease.net/new_pa241.gif"> ,<IMG src="http://www.wzz999.nease.net/new_pa242.gif"> ]</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>conjugate(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求复数</FONT><FONT color=#ff3399>z的共轭复数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>polar(z) </FONT><FONT color=#ff3399>或</FONT></P>
<P><FONT color=#ff3399>convert(z,polar)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>把复数</FONT><FONT color=#ff3399>z转换成极坐标的表示形式polar(r,<IMG src="http://www.wzz999.nease.net/new_pa243.gif"> ), 即三角形式</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>polar(r,<IMG src="http://www.wzz999.nease.net/new_pa244.gif"> )</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>复数的极坐标表示法</FONT><FONT color=#ff3399>, 即三角形式表示法</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>exp(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>复数指数函数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>csgn(z)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399><IMG src="http://www.wzz999.nease.net/new_pa245.gif"> </FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=243 rowSpan=7>
<P><FONT color=#ff3399>求整函数与截尾函数</FONT></P>
<P><FONT color=#ff3399> <P> </P></FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>ceil(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>表示大于或等于实数</FONT><FONT color=#ff3399>x的最小整数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>floor(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>表示小于或等于实数</FONT><FONT color=#ff3399>x的最大整数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>round(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>最接近</FONT><FONT color=#ff3399>x的整数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>isqrt(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>最接近</FONT><FONT color=#ff3399><IMG src="http://www.wzz999.nease.net/new_pa246.gif"> 的整数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>iroot(x,n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>最接近</FONT><FONT color=#ff3399><IMG src="http://www.wzz999.nease.net/new_pa247.gif"> 的整数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>trunc(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>表示实数</FONT><FONT color=#ff3399>x的整数部分</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>frac(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>表示实数</FONT><FONT color=#ff3399>x的小数部分</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=67 height=138 rowSpan=4>
<P><FONT color=#ff3399>分数与浮点数运算函数</FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>evalf(num)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>把精确数</FONT><FONT color=#ff3399>num化成浮点数(默认10位有效数字)</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>evalf(num, n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>把精确数</FONT><FONT color=#ff3399>num化成具有n个有效数字的浮点数</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>convert(a,rational)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>将浮点数</FONT><FONT color=#ff3399>a转换成近似分数,默认为10个位数的有效数字</FONT></P></TD></TR>
<TR>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>convert(a,rational,n)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>将浮点数</FONT><FONT color=#ff3399>a转换成具有n个位数有效数字的近似分数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=67 height=69 rowSpan=2>
<P><FONT color=#ff3399>最大、最小函数</FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>max(a</FONT><FONT color=#ff3399>,b,c,...)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求最大数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>min(a</FONT><FONT color=#ff3399>,b,c,...)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399>求最小数</FONT></P></TD></TR>
<TR >
<TD  vAlign=center width=67 height=35>
<P><FONT color=#ff3399>符号函数</FONT></P>
<P><FONT color=#ff3399> <P> </P></FONT></P></TD>
<TD  vAlign=center width=132 height=35>
<P><FONT color=#ff3399>signum(x)</FONT></P></TD>
<TD  vAlign=center width=396 height=35>
<P><FONT color=#ff3399><IMG src="http://www.wzz999.nease.net/new_pa248.gif"> </FONT></P></TD></TR></TABLE>
发表于 2006-9-18 09:15 | 显示全部楼层
非常不错,不用到处查帮助了

不过最好做成可以下载的附件
发表于 2006-11-20 19:12 | 显示全部楼层
有些有用
发表于 2009-4-26 13:04 | 显示全部楼层

回复 沙发 雪缘 的帖子

不错,辛苦了
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-10 16:10 , Processed in 0.062575 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表