声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 4097|回复: 9

[声学基础] 声学的分支学科

[复制链接]
发表于 2006-8-21 08:57 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
超 声 学   

    超声学是研究超声的产生、接收和在媒质中的传播规律,超声的各种效应,以及超声在基础研究和国民经济各部门的应用等内容的声学重要分支。频率高于人类听觉上限频率(约20000赫)的声波,称为超声波,或称超声。
    超声的研究和发展,与媒质中超声的产生和接收的研究密切相关。1883年首次制成超声气哨,此后又出现了各种形式的气哨、汽笛和液哨等机械型超声发生器(又称换能器)。由于这类换能器成本低,所以经过不断改进,至今还仍广泛地用于对流体媒质的超声处理技术中。
    20世纪初,电子学的发展使人们能利用某些材料的压电效应和磁致伸缩效应制成各种机电换能器。1917年,法国物理学家朗之万用天然压电石英制成了夹心式超声换能器,并用来探查海底的潜艇。随着军事和国民经济各部门中超声应用的不断发展,又出现更大超声功率的磁致伸缩换能器,以及各种不同用途的电动型、电磁力型、静电型换能器等多种超声换能器。 材料科学的发展,使得应用最广泛的压电换能器也由天然压电晶体发展到机电耦合系数高、价格低廉、性能良好的压电陶瓷、人工压电单晶、压电半导体以及塑料压电薄膜等。产生和检测超声波的频率,也由几十千赫提高到上千兆赫。产生和接收的波型也由单纯的纵波扩大为横波、扭转波、弯曲波、表面波等。如频率为几十兆赫到上千兆赫的微型表面波都已成功地用于雷达、电子通信和成像技术等方面。
    近年来,为了物质结构等基础研究的需要,超声波的产生和接收还在向更高频率(1012赫以上)发展。例如在媒质端面直接蒸发或溅射上压电薄膜或磁致伸缩的铁磁性薄膜,就可获得数百兆赫直至几万兆赫的超声;利用凹型的微波谐振腔,可在石英棒内获得几万兆赫的超声。此外,用热脉冲、半导体雪崩、超导结、光子与声子的相互作用等方法,产生或接收更高频率的超声。
    超声波在媒质中的反射、折射、衍射散射等传播规律与可听声波的并无质的区别。超声在一般流体媒质(气体、液体)中的传描理论已较成熟,然而声波在高速流动的流体媒质中的传播,在液晶等特殊液体中的传播,以及大振幅声波在流体媒质中转插的非线性问题等的研究,仍在不断发展。 当超声在媒质中传播时,由于声波和媒质之间的相互作用,使媒质发生一系列物理的和化学的变化,也出现一系列力学、光学、电、化学等超声效应。
    线性交变的振动作用是指由于媒质在一定频率和声强的超声波作用下作受迫振动,而使媒质中的质点位移、速度、加速度以及媒质中的应力等分别达到一定的数值而产生一系列超声效应。当质点速度远小于媒质中的声速时,所产生的机械效应,如悬浮粒子的凝聚、声光衍射、超声在压电或压磁材料中感生电场或磁场等,可用线性声学理论说明,故称为线性的交变机械作用。
    由于超声振动的非线性而产生像锯齿波形效应和各种直流定向力,并由此而产生了一系列特殊的超声效应,如超声破碎、局部高温、促进化学反应等等。
    当液体中有强度超过该液体的空化阈的超声传播时,液体内会产生大量的气泡,小气泡将随着超声振动而逐渐生长和增大,然后又突然破灭和分裂,分裂后的气泡又连续生长和破灭,这种现象称之为空化。 这些小气泡急速崩溃时在气泡内产生了高温高压,并且由于气泡周围的液体高速冲入气泡,而在气泡附近的液体中产生了强烈的局部激波,也形成了局部的高温高压,从而产生了超声的清洗、粉碎、乳化、分散、促进化学反应等一系列的作用,同时还伴有强烈的空化噪声和声致发光。在液体中进行的超声处理技术,大多数都与空化作用有关。
    以超声为工具,来检验、测量或控制各种非声学量及其变化的超声检测和控制技术。用超声波易于获得指向性极好的定向声束,加上超声波能在不透光材料中传播,因此它已广泛地用于各种材料的无损探伤、测厚、测距、医学诊断和成像等。当前,超声检测这方面的新研究和新应用仍在不断地出现,例如声发射技术和超声全息等等。而采用数字信号处理技术来解决超声检测中以往尚未解决或尚未圆满解决的问题的研究工作,近年来也非常活跃。 超声处理是通过超声对物质的作用而来改变或加速改变物质的一些物理、化学、生物特性或状态的技术。由于使用适当的换能器可产生大功率的超声波,而通过聚焦、增幅杆等方法,还可获得高声强的超声,加上液体中的空化现象,使得利用超声进行加工、清洗、焊接、乳化、粉碎、脱气、促进化学反应、医疗,以及种子处理等已经广泛地应用于工业、农业、医学卫生等各个部门,并还在继续发展。但很多应用机理至今尚未搞清,有待深入研究。
    机械运动是最简单、也最普通的物质运动,它和其他形式的物质运动以及物质结构之间的关系非常密切。超声振动本身就是一种机械运动,因此,超声方法也是研究物质结构的一个重要途径。20世纪40年代起,人们在研究媒质中超声波的声速和声衰减随频率变化的关系时,就陆续发现了它们与各种分子弛豫过程及微观谐振过程(如铁磁、顺磁、核磁共振等)之间的关系,从而形成了分子声学的分支学科。
    随着人们能产生和接收的超声波频率的不断提高,目前已正在逐步接近点阵热振动的频率,利用这些甚高频超声的量子化声能来研究原子间的相互作用、能量传递等问题是十分有意义的。通过对甚高频超声声速和衰减的测定,可以了解声波与点阵振动的相互关系及点阵振动各模式之间的耦合情况,还可以用来研究金属和半导体中声子与电子、声子与超导结、声子与光子的相互作用等。因此,超声和电磁辐射及粒子轰击一起列为研究物质微观结构和微观过程的三大重要手段。与之有关的一门新分支学科--量子声学也正在形成。
    超声学是一门应用性和边缘性很强的学科,从它一百多年来的发展可以看出,超声学是随着它在国防、工农业生产、医学、基础研究等领域中应用的不断深入而得到发展的。它不断借鉴电子学、材料科学、光学、固体物理等其他学科的内容,而使自己更加丰富。同时,超声学的发展又为这些学科的发展提供了一些重要器件和行之有效的研究手段。如超声探伤和超声成像技术都是借鉴了雷达的原理和技术而发展起来的,而超声的发展又为电子学、光电子学、雷达技术的发展提供了超声延迟线、滤波器、卷积器、声光调制器等重要的体波和表面波器件。
    但是,超声学仍是一门年轻的学科,其中存在着许多尚待深入研究的问题,对许多超声应用的机理还未彻底了解,况且实践还在不断地向超声学提出各种新的课题,而这些问题的不断提出和解决,都已表明了超声学是在不断向前发展。
回复
分享到:

使用道具 举报

 楼主| 发表于 2006-8-21 08:57 | 显示全部楼层
次 声 学   

    次声学是研究次声波在媒质中的产生、传播和接收及其效应和应用的科学。次声是频率低于可听声频率范围的声,它的频率范围大致为1/10000Hz~20Hz。
次声学的发展历史

    早在19世纪,人们就已记录到了自然界中一些偶发事件(如大火山爆发或流星爆炸)所产生的次声波。其中最著名是1883年8月27日,印度尼西亚的喀拉喀托火山突然爆发,它产生的次声波传播了十几万公里,当时用简单微气压计都可以记录到它。在理论方面,最早在1890年,英国物理学家瑞利就开始了大气振荡现象的研究。 第一次世界大战前后,火炮和高能炸药的出现,提供了较大的声源,促进了对次声在大气中传播现象的了解。在20世纪20年代还进行了高层大气的温度和风对次声传播影响的研究,并建立了探测高层大气的简单声学方法,为此还研制了灵敏度更高的微气压计、热线式次声传声器。30年代发展了电容次声传声器。40年代后,利用声波在大气中的传播速度与温度的均方根成正比关系的原理,提出了火箭-榴弹次声法测定高层大气温度和风速的方法,发展了次声接收和定位的新技术。 核武器的发展对次声学的建立起了很大的推动作用,使得次声接收、抗干扰方法、定位技术、信号处理和次声传播等方面部有了很大发展。核爆炸会形成强大的次声源,它产生的次声波在大气中可以传插得非常远,次声方法曾成为探测大气中核爆炸的主要方法之一。为此建立了许多次声观察站,进行了长时期连续记录和观察。人们还发现了大气中存在许多自然次声源,对它们的发声机制和特性进行了初步的了解。
    现在知道的次声源有:火山爆发、流星、极光、电离层扰动、地震、晴空湍流、海啸、台风、雷暴、龙卷风、雷电等。认识并利用次声方法来预测它们的活动规律,已成为近代次声学研究的重要课题。 长周期的次声波在电离层中传播,使电离层受到扰动,这种以声重力波方式传播的次声波成为高空大气研究中非常活跃的课题之一。
次声学的基本内容

    次声在大气中的传播具有衰减小并受波导和重力影响等特点。
    声在大气中传播的衰减主要是由分子吸收、热传导、和粘滞效应引起的,相应的吸收系数与频率的二次方成正比。由于次声的频率很低,所以大气对次声波的吸收系数很小。此外,湍流的作用也会引起次声波的衰减。但是它们的影响都很小,通常可略去不计。
    大气温度密度和风速随高度具有不均匀分布的特性,使得次声在大气中传播时出现"影区"、聚焦和波导等现象。当高度增加时,气温逐渐降低,在20公里左右出现一个极小值;之后,又开始随高度的增加,气温上升,在50公里左右气温再次降低,在80公里左右形成第二个极小值;然后复又升高。 大气次声波导现象与这种温度分布有密切关系。声波主要沿着温度极小值所形成的通道(称为声道)传播。通常将20公里高度极小值附近的大气层称为大气下声道,高度80公里附近的大气层称为大气上声道。次声波在大气中传播时,可以同时受到两个声道作用的影响。
    在距离声源100~200公里处,次声信号很弱,通常将这样的区域称为影区。在某种大气温度分布条件下,经过声道传输次声波聚集在某一区域,这一区域称它为聚焦区。 风也会对次声在大气中的传播产生很大的影响。次声的传播在顺风和逆风时差别很大:顺风时,声线较集中于低层大气;逆风时,产生较大的影区。
    不同频率的次声在大气声道中传播速度不相同,产生频散现象,这使得在不同地点测得次声波的波形各不相同。
    大气的密度随高度增加而递减,如果次声波的波长很大,例如有几十公里长,这时,在一个波长的范围内,大气密度已经产生显著的变化了。当大气媒质在声波的作用下受到压缩时,它的重心较周围媒质提高,这时除了弹性恢复力作用外,它还受重力的作用。反之,当它在声波作用下膨胀时,也有附加重力作用使它恢复到平衡状态。所以长周期的次声波,除了弹性力作用外,还附加有重力的作用,这种情况下,次声波通常称为声重力波。 声重力波在大气中传播时,在理论上可以看作是一些简正波的叠加。基本上可分为声分支和重力分支。它们在大气中传播都具有频散现象。由于重力分支主要能量在地面附近传播。相应地面附近温度较高,因此传播速度较大。 次声测量包括次声接收、记录、探测和分析等。
次声学的应用

    早在第二次世界大战前,次声方法已应用于探测火炮的位置,可是直到50年代,它在其他方面的应用问题才开始被人们注意,它的应用前景是很广阔的,大致可分为下列几个方面:通过研究自然现象产生的次声波的特性和产生机制,更深入地认识这些现象的特性和规律。例如人们利用测定极光产生次声波的特性来研究极光恬动的规律等。
    利用接收到的被测声源所辐射出的次声波,探测它的位置、大小和其他特性,例如通过接收核爆炸、火箭发射火炮或台风所产生的次声波去探测这些次声源的有关参量。
    预测自然灾害性事件,许多灾害性现象如火山喷发、龙卷风和雷暴等在发生前可能会辐射出次声波,因此有可能利用这些前兆现象预测灾害事件。
    次声在大气中传播时,很容易受到大气媒质的影响,它与大气中风和温度分布等有密切的联系。因此可以通过测定自然或人工产生的次声波在大气中传播特性的测定,可以探测某些大规模气象的性质和规律。这种方法的优点在于可以对大范围大气进行连续不断的探测和监视。
    通过测定次声波与大气中其他波动的相互作用的结果,探测这些活动特性。例如在电离层中次声波的作用使电波传播受到行进性干扰。可以通过测定次声波的特性,更进一步揭示电离层扰动的规律。同样,通过测定声波与重力波或其他波动的作用,可以研究这些波动的活动规律。
    人和其他生物不仅能够对次声产生某种反应,而且他(它)们的某些器官也会发出微弱的次声,因此可以利用测定这些次声波的特性来了解人体或其他生物相应器官的活动情况。
 楼主| 发表于 2006-8-21 08:57 | 显示全部楼层
大 气 声 学   

    大气声学是研究大气声波的产生机制和各种声源的声波在大气中传播规律的分支,作为以声学方法探测大气的一种手段,也可看成是大气物理的一个分支。
大气声学简史

    声在大气中的折射是最早引起人们注意的声学现象之一,对它的研究始于声学的萌芽阶段。为了澄清当时流传的"英国的听闻情况比意大利的好"这一说法,英国牧师德勒姆于1704年同意大利人间韦朗尼以实验证明:在适当考虑风的影响之后,这两国的声传播情况并没有什么差别。由此开创了大气声学领域。但是直到19世纪后半叶,大气声学才继续得到发展。
    19世纪中叶以后,物理学家雷诺、斯托克斯和廷德耳等人分别对风、风梯度和温度梯度的声折射效应,以及大气起伏对声的散射进行了研究。瑞利在其1877年出版的巨著《声学原理》中,对包括这些工作在内的声学研究成果在理论上给予了全面的总结和提高。 20世纪初,在测量爆炸的可闻区时,发现了爆炸源周围的声音的"反常"传播现象:在距强烈爆炸中心周围数百千米的可闻区之内,存在一个宽达一百千米的环状寂静区;可闻区外,在离声源200公里左右的距离上又出现了一个可闻区,称为异常可闻区。
    埃姆登随后从理论上解释了这种异常传播现象,认为是由平流层逆温和风结构所引起的声波折射,为此,在20~30年代曾进行了爆炸声波异常传播的较大规模试验,一方面验证了异常传播的理论,另一方面从探测结果推算平流层上部大气的温度和风。而对流星尾迹的观察证明,在证明同温层顶确实存在逆温层。同时,从爆炸声波异常传播试验中发现了次声波,开始了大气次声波的研究。
    从泰勒开始,逐步引进湍流理论来研究大气的小尺度动力学结构,并以这种观点重新研究声散射;奥布霍夫将声散射截面同端流动能谱密度联系起来,对大气声散射作出初步的定量解释;伯格曼首先以相关函数研究了散射。以后的许多工作都围绕着如何表达总散射截面的问题展开。
    当对大气进行声探测时,不得不解决复杂的逆问题。20世纪50年代后期采用火箭携带榴弹在高空爆炸,在地面上测量其发出的声波,获取了80公里以下的大气温度和风廓线的分布。到50年代末,建立了较完善的大气声波散射理论。
    20世纪60年代末,在原有"声雷达"基础上大大改进了的回声探测器对大气物理的研究起了很大推动作用,导致了大气声学许多方面的进展,例如在声传播过程中相位和振幅起伏的研究,用次声"透视"大尺度的大气过程,高功率声辐射天线附近的非线性效应,噪声的问题,与多普勒效应有关的问题等等。
大气声学的内容


    大气中存在着的各种各样的声音,不过可以笼统的分成自然的和人为的两大类。前者主要来源于一系列气象现象和其他地球物理现象,如飓风(台风)、海浪、地震、极光、磁暴等。它们不仅产生可听声而且更产生次声;风的呼啸是由于大气涡旋通过各种障碍物时被破坏而产生的。其他一些常见的自然声则大多来自空气流中某些物体的振动,如电线的嗡嗡声、树叶的沙沙声等。
    人为的声音中主要是工业和交通工具的噪声,特别是超音速喷气机飞行时产生的冲击波传播问题,日益引起人们的注意。如果大气条件有利于这种波的聚焦,那么地面上的建筑物和人的健康就会受到危害。 随着声定位技术的发展,现在已可由若干个接收站测得的数据定出自然声源或人为声源的位置,这在预报台风、地震以及侦察核爆炸、炮位中都有具体应用。随着数字式数据处理技术的迅速改进,这类应用将日臻完善和广泛。
    大气中自然源发出的声波具有极宽的频谱,此外,在周期几分钟至几十分钟内,还存在一类空气压缩力和重力共同参与作用的声重力波。不过大部分自然声源主要产生大气次声波。由于发声过程的复杂性、测量技术和识别声源方面的困难,仅对雷声作过较多的频谱测量,其他发声过程的频谱尚只能估计。
    雷是伴随闪电出现的大气发声现象。雷形成的机制,主要是强烈的闪电放电时,电流通过闪电通道而产生高温高压等离子体,造成一个向通道四周传播的激震波,这个高压激震波在很短距离内迅速衰减并退化为强的可闻声和次声。
    由于闪电放电的复杂性,不同闪电的雷声在时间变化和强度等方面也有很大差异,大体可分为炸雷(持续时间1秒左右的强烈雷声脉冲)、闷雷(重复数次的隆隆声脉冲)和拉磨雷(持续较长时间的低沉声响)三种。 20世纪60年代以来对雷声声强谱密度的测量表明,雷声声强谱的峰值所在的频率为4~125赫,有的雷声声强谱峰处于次声波段,有的在可闻声波段。一次雷在不同时刻的声音,其瞬时声强谱也存在很大差异。雷声的复杂性也为研究雷雨云提供了一种信息来源。
    从声学观点来看,大气是一种运动着的不均匀媒质,大气声学的重大课题都与声在大气中传播时所发生的现象相关联。大气的密度和温度随高度而降低,而温度在某些高度重新增长。在这种规则的不均匀性上,叠加着温度和风随气象条件的变化以及不同尺度的随机湍流脉动。所有这些不均匀性都对声传播产生强烈影响:无湍流大气的分层不均匀性使声音产生折射;湍流不均匀性引起声音的散射和减弱。
    不同频率的声波在大气中具有不同的传播速度,因而在大气中传播的(非单频)次声波会产生频散。同时大气特定的温度层结和风结构对各种频率和向各个方向传播的次声波具有选择作用,即只允许某些频率的次声波作远距离传播,其余频率的传播则受到强烈抑制,这就是大气选模作用。次声波的频散和大气选模作用,在探测人工和自然声源以及解释声信号特征方面,都是十分重要的。
 楼主| 发表于 2006-8-21 08:58 | 显示全部楼层
电 声 学   

    电声学是研究声电相互转换的原理和技术,以及声信号的存储、加工、传递、测量和利用的科学。它所涉及的频率范围很广泛,从极低频的次声一直延伸到几十亿赫的特超声。不过通常所指的电声,都属于可听声范围。
    电声技术的历史最早可以追溯到19世纪,由爱迪生发明留声机和贝尔发明用于电话机的碳粒传声器开始,1881年曾有人以两个碳粒传声器连接几对耳机,作了双通路的立体声传递表演。大约在1919年第一次用电子管放大器和电磁式扬声器做了扩声实验。
    在第一次世界大战以后,科学家们把机电方面的研究成果应用于电声领域中,于是电声学就有了理论基础。随着电声换能器理论的发展,较为完善的各类电声设备和电声测量仪器相继问世,较别是20世纪70年代来,电子计算机和激光技术在电声领域中的应用,大大促进了电声学的发展。
    电声转换器是把声能转换成电能或电能转换成声能的器件,对它的研究是电声学的一个重要内容分支。广义的电声换能器应用的频率范围很宽,包括次声、可听声、超声换能器。属于可听声频率范围内的电声换能器有传声器、扬声器、送受话器、助听器等等。按照换能方式,它们又可以分成电动式、静电式、压电式、电磁式、碳粒式、离子式和调制气流式等。其中后三种是不可逆的,碳粒式只能把声能变成电能,离子式和调制气流式的只能产生声能。而其他类型换能器则是可逆的,即可用作声接收器,也可用作声发射器。
    各种电声换能器,尽管其类型、功用或工作状态不同,它们都包含两个基本组成部分,即电系统和机械振动系统。在换能器内部,电系统和机械振动系统之间通过某种物理效应相互联系,以完成能量的转换;在其外部,换能器的电系统与信号发生器的输出回路,或前级放大器的输入回路相匹配;而换能器的机械振动系统,以其振动表面与声场相匹配。所以设计电声换能器要同时考虑到力-电-声三个体系。
    这三种体系是互相牵制的,处理得不好往往会顾此失彼。例如,一个有效的磁系统可能会非常笨重,变成一种令人不能接受的声障碍物;或者声输入阻抗或电输出阻抗的数值,可能根本不能与周围媒质或附属设备相匹配。由此可见,电声换能器的设计总是在许多相互矛盾的因素中采取折衷的办法,因而在一定程度上可能还带有许多主观判断的技巧在内。
    电声技术是电声领域中发展得比较快的一个分支,在政治、军事、文化各个领域内有着广泛的应用。例如,应用于有线或无线通信系统,有线或无线广播系统以及会场、剧院的扩声;录音棚、高保真录放系统等;此外还应用于发展中的声控语控技术;以及语言识别和声测等新技术。总起来说,它主要包括录放声技术、扩声技术以及与它们有关的电声仪器和电声测试技术等。
    录放声技术是指把自然声音经过一系列技术设备(如传声器、录音机、拾声器等)进行接收、放大、传送、存储、记录和复制加工,然后再重放出来供人聆听的技术。它研究的主要问题是如何保持自然声的优良的音质,即在各个环带以及整个系统,都具有逼真地保持声音信号原来面貌的能力,包括对声音信号进行必要的美化和加工。 声频放声装置,可分成四个部分:输入端录声机、电唱机、接收机是从盒式磁带、唱片及广播电波中把希望的节目作为电信号提取出来的设备;前级控制台(包括前置放大器、衰减器、混合网路等)主要作调音用;功率放大器是将控制台的输出信号增强到能够驱动扬声器系统工作的放大器;最后一部分扬声器或耳机是将电信号转换成声信号,收听室相当于扬声器系统的使用环境,对重放音乐的音质起很大的作用。
    扩声系统主要包括:声源和它周围的环境、把声信号转变为电信号的传声器,放大电信号并对信号加工的设备,传输线,把电信号转变为声信号的扬声器和听众区的声学环境。扩声不同于放声之处是传声器和扬声器处在同一声场内。因此扩声系统是具有反馈的系统。在通路增益足够大时系统就会失去稳定性,并过渡到自振状态,产生啸叫。所以在扩声技术中除了对声信号进行加工美化外,为了提高扩声系统的最大功率增益,改进扩声质量和系统的稳定性,必须采取措施来抑制声反馈所引起的声音畸变。
    电声学还是一门与人的主观因素密切相关的物理科学,原因是从声源到接收都摆脱不了人的因素。声音是多维空间问题(它包括音调、音色、持续时间、强度、声源方位以及噪声干扰等),其中每一维变化都对听感有影响。复杂的主观感受并不是任何仪表所能完全反映出来的,这必须联系到生理声学和心理声学、语言声学甚至音乐声学和建筑声学等各个方面的问题,因而形成了电声学的特色和它的复杂性。
    社会的发展和生产的需要,对电声学提出了大量的实际和理论问题。因此电声学总的发展趋势是:电声器件和电声设备朝着高保真、立体声、高抗噪能力、高效率、高通话容量的方向发展;还要进行音质评价的研究,改善录放技术以及声音加工技术;新的换能机理的研究以及新材料的开发;提高检测声信号的能力仍是声测技术的主攻方向。
    总之,只要发声过程和听感(知觉)过程以及与二者互相联系的物理和生理上的规律不断为人们所掌握,电声学便会不断有新的发展,所以电声学是蕴藏着巨大生命力的学科。
 楼主| 发表于 2006-8-21 08:58 | 显示全部楼层
建 筑 声 学   

    建筑声学是研究建筑中声学环境问题的科学。它主要研究室内音质和建筑环境的噪声控制。
    有关建筑声学的记载最早见于公元前一世纪,罗马建筑师维特鲁威所写的《建筑十书》。书中记述了古希腊剧场中的音响调节方法,如利用共鸣缸和反射面以增加演出的音量等。在中世纪,欧洲教堂采用大的内部空间和吸声系数低的墙面,以产生长混响声,造成神秘的宗教气氛。当时也曾使用吸收低频声的共振器,用以改善剧场的声音效果。
    15~17世纪,欧洲修建的一些剧院,大多有环形包厢和排列至接近顶棚的台阶式座位,同时由于听众和衣着对声能的吸收,以及建筑物内部繁复的凹凸装饰对声音的散射作用,使混响时间适中,声场分布也比较均匀。剧场或其他建筑物的这种设计,当初可能只求解决视线问题,但无意中却取得了较好的听闻效果。
    16世纪,中国建成著名的北京天坛皇穹宇,建有直径65米的回音壁,可使微弱的声音沿壁传播一二百米。在皇穹宇的台阶前,还有可以听到几次回声的三音石。
    18~19世纪,自然科学的发展推动了理论声学的发展。到19世纪末,古典理论声学发展到最高峰。20世纪初,美国赛宾提出了著名的混响理论,使建筑声学进入利学范畴。从20年代开始,由于电子管的出现和放大器的应用,使非常微小的声学量的测量得以实现,这就为现代建筑声学的进一步发展开辟了道路。 建筑声学的基本任务是研究室内声波传输的物理条件和声学处理方法,以保证室内具有良好听闻条件;研究控制建筑物内部和外部一定空间内的噪声干扰和危害。
    室内声学的研究方法有几何声学方法、统计声学方法和波动声学方法。
    当室内几何尺寸比声波波长大得多时,可用几何声学方法研究早期反射声分布以加强直达声,提高声场的均匀性,避免音质缺陷;统计声学方法是从能量的角度,研究在连续声源激发下声能密度的增长、稳定和衰减过程(即混响过程),并给混响时间以确切的定义,使主观评价标准和声学客观量结合起来,为室内声学设计提供科学依据;当室内几何尺寸与声波波长可比时,易出现共振现象,可用波动声学方法研究室内声的简正振动方式和产生条件,以提高小空间内声场的均匀性和频谱特性。
    室内声学设计内容包括体型和容积的选择,最佳混响时间及其频率特性的选择和确定,吸声材料的组合布置和设计适当的反射面,以合理地组织近次反射声等。 声学设计要考虑到两个方面,一方面要加强声音传播途径中有效的声反射,使声能在建筑空间内均匀分布和扩散,如在厅堂音质设计中应保证各处观众席都有适当的响度。另一方面要采用各种吸声材料和吸声结构,以控制混响时间和规定的频率特性,防止回声和声能集中等现象。设计阶段要进行声学模型试验,预测所采取的声学措施的效果。
    处理室内音质一方面要了解室内空间体型、所选用的材料对声场的影响。还要考虑室内声场声学参数与主观听闻效果的关系,即音质的主观评价。可以说确定室内音质的好坏,最终还在于听众的主观感受。由于听众的个人感受和鉴赏力的不同,在主观评价方面的非一致性是这门学科的特点之一;因此,建筑声学测量作为研究。探索声学参数与听众主观感觉的相关性,以及室内声信号主观感觉与室内音质标准相互关系的手段,也是室内声学的一个重要内容。
    在大型厅堂建筑中,往往采用电声设备以增强自然声和提高直达声的均匀程度,还可以在电路中采用人工延迟、人工混响等措施以提高音质效果。室内扩声是大型厅堂音质设计必不可少的一个方面,因此,现代扩声技术已成为室内声学的一个组成部分。
    即使有良好的室内音质设计,如果受到噪声的严重干扰,也将难以获得良好的室内听闻条件。为了保证建筑物的使用功能,保证人们正常生活和工作条件,也必须减弱噪声的影响。因此,控制建筑环境噪声,保证建筑物内部达到一定的安静标准,是建筑声学的另一个重要方面。
    噪声干扰,除与噪声强度有关外,还与噪声的频谱持续时间、重复出现次数以及人的听觉特性、心理、生理等因素有关。控制噪声就是按照实际需要和可能,将噪声控制在某一适当范围内,其所容许的最高噪声标准称为容许噪声级,即噪声容许标准。对于不同用途的建筑物,有不同建筑噪声容许标准:如对工业建筑主要是为保护人体健康而制定的卫生标准;而对学习和生活环境则要保证达到一定的安静标准。
    在噪声控制中,首先要降低噪声源的声辐射强度,其次是控制噪声的传播,再次是采取个人防护措施。噪声按传播途径可分为两种:一是由空气传描的噪声,即空气声;一是由建筑结构传播的机械振动所辐射的噪声,即固体声。空气声会传播过程的衰减和设置隔墙而大大减弱;固体声由于建筑材料对声能的衰减作用很小,可传播得较远,通常采用分离式构件或弹性联接等措施来减弱其传播。
    建筑物空气声隔声的能力取决于墙或间壁(隔断)的隔声量。基本定律是质量定律,即墙或间壁的隔声量与它的面密度的对数成正比。现代建筑由于广泛采用轻质材料和轻型结构,减弱了对空气声隔声的能力,因此又发展出双层墙体结构和多层复合墙板,以满足隔声的要求。
    在建筑物中实现固体声隔声,相对地说要困难些。采用一般的隔振方法,如采用不连续结构,施工比较复杂,对于要求有高度整体性的现代建筑尤其是这样。人在楼板上走动或移动物件时产生撞击声,直接对楼厂房间造成噪声干扰。可用标准打击器撞击楼板,在楼下测定声压级值。声压级值越大,表示楼板隔绝撞击声的性能越差。
    控制楼板撞击声的主要方法是在楼板面层上或地面板与承重楼板之间设置弹性层,特别是在楼板上铺设弹性面层,是隔绝撞击声的简便有效的措施。在工业建筑物中,隔声间或隔声罩已成为广泛采用的降低设备噪声的手段。
    在机械设备下面设置隔振器,以减弱振动,是建筑设备隔振的主要措施。目前,隔振器已由逐个设计发展成为定型产品。 由于室内声学同建筑空间的体积、形状和室内表面处理都有密切关系,因此室内声学设计必须从建筑的观点确定方案。取得良好的声学功能和建筑艺术的高度统一的效果,这是科学家和建筑师进行合作的共同目标。
    改善建筑物的声环境,必须加强基础研究、技术措施和组织管理措施,虽然重点应放在声源上,但是改变声源往往较为困难甚至不可能,因此要更多地注意传播途径和接收条件。各种控制技术都涉及经济问题,因此必须同有关的各种专业合作进行综合研究,以获得最佳的技术效果和经济效益。
 楼主| 发表于 2006-8-21 08:58 | 显示全部楼层
生 理 声 学   

    生理声学是声学和生理学的边缘学科,它主要研究声音在人和动物引起的听觉过程、机理和特性,也包括人和动物的发声。
    耳是听觉器官的统称。人耳可分为外耳、中耳和内耳,连同各级听觉中枢组成听觉系统。听觉的声学过程发生在外耳、中耳及内耳的耳蜗一部分,听觉的神经过程发生在耳蜗的感受器部分、听神经和听觉中枢。
    外耳包括耳廓和外耳道,主要起集声作用。中耳包括鼓膜、听骨链、鼓室、中耳机、咽鼓管等结构,主要起传声作用。耳蜗主要起感声作用。
    耳蜗是一有骨质外壳卷曲呈蜗牛状的三层平行管道结构,三层管道内充满淋巴液,分别称前庭阶、鼓阶和蜗管,后者夹在前二者当中,由软组织分隔。蜗管与鼓阶间的分隔称基底膜,上面排列着声音的感受器-螺旋器,其感受细胞为毛细胞。前庭阶和鼓阶各有一窗开向鼓室,分别称卵窗和圆窗,窗上均有膜。卵窗膜与听骨链内端的镫骨底板连在一起。耳蜗靠近窗的一端称基部,另一端称蜗顶。
    正常耳的传声途径是声波作用于鼓膜,经听骨链传入耳蜗,称气导。鼓膜面积比卵窗膜约大20倍,听骨链的杠杆结构使在鼓膜端振幅大、力小的振动变成在卵窗膜端振幅小、力大的振动,有如一个变压器,起到阻抗匹配的作用,从而提高了声音从空气媒质至淋巴液媒质的传播效率。声波也可通过头骨的振动直接传至内耳,称骨传声,不过传播效率较低。
    听觉的机理包括从声波的机械振动至电、化学、神经脉冲、中枢信息加工等一系列过程。当听骨链推动卵窗膜产生振动时,声波便开始在耳蜗内的淋巴液媒质中传播,先经前庭阶,后经鼓阶。在传播途径中的时差造成了二阶各段每一瞬间的压力差,使基底膜上下波动,从耳蜗基部开始,顺序移向蜗顶,称行波。基底膜的运动使排列在它上面的螺旋器也相应地运动。
    由于惯性等作用,螺旋器内不同结构运动的方向差和速度差产生一种力,使感受细胞上的纤毛弯曲,改变了经常存在于蜗管和毛细胞之间的生物电流回路中的阻抗,从而调制了通过的电流。电流的变化导致感受细胞与听神经末梢间的突触释放化学递质,使神经末梢兴奋,发出神经脉冲。接受不同特性的各种声音后听神经发出的脉冲在时间和空间上各有不同的构型,它们携带有关声音的信息,顺序传至各级听觉中枢,经过处理和分析,最后产生反映声音各种复杂特性的听觉。
    沿基底膜移动的行波有一振幅最大点(共振点),其位置因频率而变,高频靠近基部,低频靠近蜗顶。不同频率的声音因而可使基底膜不同部位受到员强的刺激,这便是耳蜗频率分析的部位机理。听神经发放的脉冲与声波周期有一定的同步关系,听神经上许多纤维发出的脉冲排放因而可以与声音的频率一致,这便是耳蜗频率分析的时间机理。声音的强度主要由被兴奋神经纤维的数目及每一纤维兴奋后发放脉冲的多少来反映。从不同方位发出的声音到达双耳的时间差和强度差则是判断声源方位的主要依据。
    电活动是听觉神经过程的基础。耳蜗的振电压来源于螺旋器,它是上述回路电流调制的结果,是从声音的机械运动转换为神经活动的重要环节。它的主要特点是准确地复制声音刺激的声学波形,与传声器的声-电转换作用相仿,从耳蜗可记到听神经的动作电位,从各级听觉中枢可记到由声音引起的多种电变化,统称诱发电位,用微电极技术可记录听觉系统各部位单个神经细胞的电活动。电活动规律是听觉的基本研究内容之一。
    发声器官在喉头,由声带、软骨韧带结构的支架、控制声带位置和张力的肌肉群等组成。肌肉的活动由神经支配。从气管经喉头、咽部至嘴和鼻孔的管道称为声道。
    当气流从气管呼出时,呈一定张力的声带便可振动而发声,称嗓音。嗓音是多谐的,其基频的高低取决于声带的长短和张力,声音的强度则取决于气流的大小和速度。说话时基频范围约为100到300赫兹。男声较低,女声和童声较高。
    人类的语音包含极其大量的信息。发声的各种动作受大脑语言中枢的控制,通过学习后可以熟练地掌握。讲话者可以不断地通过听觉对发出的语音、唇舌等的触觉、声道肌肉群的本体感觉等接受反馈信息,这是语言流畅的重要条件。在学习通话时听觉的反馈尤其重要。绝大多数哑病是因为耳聋,患者的发声器官往往是正常的。
 楼主| 发表于 2006-8-21 08:58 | 显示全部楼层
生 物 声 学   

    生物声学是研究能发声和有听觉动物的发声机制、声信号特征、声接收、加工和识别,动物声通信与动物声纳系统,以及各种动物的声行为的生物物理学分支学科。
    生物声学是介于生物学和声学之间的一门边缘学科,它是生物学、声学、语言学、医学、化学等多学科相互渗透的产物。广义的生物声学还涉及生物组织的声学特征、声对生物组织的效应、生物媒质的超声性质、超声的生物效应及超声剂量学等方面内容,并在此基础上形成了超声生物物理学一个新的科学分支。生物声学发展简史 生物声学的萌芽早在人类的久远历史上就已留下了印迹。在公元前三千年的埃及古墓中,曾发现有猎人模仿鹈的叫声引诱飞鸟行猎的图案。在公元前六百年中国春秋时代的《诗经》中就有"雉之朝雒,尚求其雌"诗句,是说雄性野鸡清晨鸣叫是在寻求配偶。
    早期的文艺作品多对于虫鸣、鸟啾等动物音乐有生动的描述,其后人们又相继对昆虫、鸟类、两栖类、鱼类及哺乳动物的发声和听觉器官做了广泛的研究。
    但人们对动物声的实验研究开始甚晚,1938年美国科学家皮尔斯和格里芬证实,蝙蝠能发出人耳听不见的超声。其后随着声学、电子学与通讯技术的飞速发展,大大推动了人们对动物声通信方法的研究。1956年4月,在美国宾夕法尼亚州召开了世界上第一次生物声学学术讨论会,建立了生物声学国际委员会(ICBA),这次会议标志着生物声学的诞生。
    法国著名科学家比斯内尔尹1963年编辑了《动物的声学行为》一书,汇集了当时生物声学研究的主要成果,是生物声学发展的一个里程碑。此后,陆续举行过多种关于动物听觉与声通信的国际学术会议。
    随着科学技术的迅速发展,出现了录音机、语图仪和计算机,大大加强了对声音的录放和分析技术,使对动物声的研究进入了新的历史阶段。与此同时,由于声谱技术的扩展,特别是超声技术和超声医学的发展,使生物声学的内容大大超出了早期的正统研究范围,开始对超声在生物体系的各个层次上(生物大分子、细胞及生物组织)的传播和相互作用规律进行了大量的研究,使生物声学在更广泛的意义上与生命科学联系起来。
生物声学的基本内容

    动物之间的联系和交往是维系它们种群和群落结构,以及进行正常生活的必要手段。光、电、磁以及化学气味都可以作动物交往的媒介,然而声信息在动物交往中却占有特别重要的地位。它最大优点是传递距离远,且易于负载丰富多彩的感情。生物声学主要围绕动物声交往这个内容进行着一系列有关课题的研究。 生物声学主要研究同一种群内动物声的识别和交往功能,不同种群的动物声的区别和隔离功能,以及动物声在种群和群落的形成和进化过程中的作用等;
    生物声学还研究动物的声发生和声接收器官,及其工作机制,即动物声交往的生理基础和它们与动物形态学的关系。许多动物的发声器官是声带,但有的却不是用声带产生动物声,如蚱蜢用后腿摩擦发声、蝉用腹下薄膜发声、鱼可用鳔发声、海豚主要靠鼻道发声等。
    同样,动物接受声波的听觉器官也各不相同。如蚱蜢微小的听觉器官生在腹部;纺织娘靠前脚上一个肉眼看不到的微型薄膜感受声波;蟑螂是用尾须接收声波;雄蚊头上两根触角上的刚毛则对雌蚊翅膀的扇动声特别敏感;许多飞蛾都有一种内藏式的"声呐系统"可以收听超声波;大多数鱼的听觉器官便是体侧的侧线,在这些侧线中含有听觉神经末梢以受纳声波;蛇的听觉极弱,主要通过腹部感受周围环境的动静等等。
    长期以来,人们出于在空间和水下探测中应用仿生学的强烈兴趣,对蝙蝠和海豚的超声定位系统给予了特殊的注意为了分析研究它们的发声信号,建立和发展了必要的理论模型和数学方法。
    蝙蝠用喉头发射超声,并用耳朵接收其反射回波,从而构成超声探测系统。发射的超声频率可高达10万赫(菊头蝙科)。实验表明,挖去双眼的蝙蝠借助其超声定位系统可探查到0.1毫米的金属丝障碍物,可在半秒内捕捉到三个飞行中的昆虫。
    海豚也有极强的超声定位本领,而且还发现海豚在相互交往时使用七种不同的发声并以长短不同的间歇相组合。科学家预言,一旦这些声信息破译后,就可通过电子技术实现人与海豚之间的对话。
    20世纪中期以来,人们使用兆赫级超声波对哺乳动物的组织和器官的超声性质(速度、衰减、吸收、声阻抗、散射等)做了大量研究,为现代医学超声工程奠定了基础。70年代以来,以B型超声成像为代表的医学超声诊断技术取得了很快的发展。它通过实时显示人体内脏的瞬态特性,直接向人们提供有关脏器的生理或病理信息。超声诊断由于安全、简单、经济、信息量丰富而受到医学界的特别赏识。
    作为生物物理学和分子生物学的组成部分,微观生物声学正在发展中。对各种氨基酸、寡肽、多肽、蛋白质及脱氧核糖核酸等生物大分子水溶液的超声弛豫吸收机制做了较深入的研究。在生物大分子构像变化、质子转移动力学及生物大分子与水分子间的相互作用等方面,也都取得了有价值的研究成果。
    声波作用于生物体对其产生某种影响称为声波的生物效应。大量试验表明,用一定频率和剂量的声波处理蔬菜、谷物、中草药及树木的种子常常可获得明显的增产效果。
    生物声学与人类生活和生产活动息息相关。播放模拟蝙蝠叫声,驱逐夜蛾,可提高玉米产量;控制海洋生物声场可以判断鱼群的位置、种类及数量,利用电子发声器引诱鱼群定向聚集,可以提高捕鱼量;飞机场安装驱鸟器会大大改善飞机的飞行安全;粮仓内安装驱鼠器可使粮食免受鼠害等等。
    人们往往成功地利用地震前动物的异常表现来预报地震的爆发,而这些动物的异常反应很可能是由地下岩石剧烈活动时发出的次声引起的;仿照水母耳做成的台风警报器可提前15小时准确地预报台风的方位和强度;仿照蝙蝠的声系统制成的声呐"眼镜"可以帮助盲人辨认出面前的电线杆、台阶以及草地中的羊肠小道。
    对哺乳动物组织超声传播和相互作用的深入研究,必然会找到描述组织生理特性的、更多的声学特征参量(如声速、声衰减、非线性参量等),建立和发展新的诊断设备,开拓定量超声诊断的途径。并可使超声医疗在更严格的科学基础上得到进一步发展。
 楼主| 发表于 2006-8-21 08:59 | 显示全部楼层
水 声 学   

    水声学是声学的一个分支学科,它主要研究声波在水下的产生、传播和接收过程,用以解决与水下目标探测和信息传输过程有关的声学问题。
    声波是已知的唯一能够在水中远距离传播的波动,在这方面远比电磁波(如无线电波、光波等)好,水声学随着海洋的开发和利用发展起来,并得到了广泛的应用。 1827年左右,瑞士和法国的科学家首次相当精确地测量了水中声速。1912年"泰坦尼克"号客轮同冰山相撞而沉没,促使一些科学家研究对冰山回声定位,这标志了水声学的诞生。
    美国的费森登设计制造了电动式水声换能器,1914年就能探测到两海里远的冰山。1918年,朗之万制成压电式换能器,产生了超声波,并应用了当时刚出现的真空管放大技术,进行水中远程目标的探测,第一次收到了潜艇的回波,开创了近代水声学,也由此发明了声呐。
    随后,水声换能器的革新,关于温度梯度影响声传播路径的机理、声吸收系数随频率变化等水声学研究的成就,使声呐得以不断改进,并在第二次世界大战期间反德国潜艇的大西洋战役中起了重要作用。
    第二次世界大战以后,为提高探测远距离目标(如潜艇)的能力,水声学研究的重点转向低频、大功率、深海和信号处理等方面。同时,水声学应用的领域也越加广泛,出现了许多新装置,例如:水声制导鱼雷,音响水雷主、被动扫描声呐,水声通信仪,声浮标,声航速仪,回声探测仪,鱼群探测仪,声导航信标,地貌仪,深、浅诲底地层剖面仪,水声释放器以及水声遥测、控制器等。
    水声作为遥测海洋的积分探头,在长时间内大面积连续监测海洋的运动过程以及海洋资源概念也已初步形成。随着海洋的开发,水声学在海洋资源的调查开发、对海洋动力学过程和环境监测、增进人类对海洋环境的认识等方面的应用还将不断地扩展。
    现代水声学的研究课题涉及面很广,主要有:新型水声换能器;水中非线性声学;水声场的时空结构;水声信号处理技术;海洋中的噪声和混响、散射和起伏,目标反射和舰船辐射噪声;海洋媒质的声学特性等。特别是水声学正在与海洋、地质、水生物等学科互相渗透,而形成海洋声学等研究领域。
    水声换能器是发射和接收水中声信号的装置,应用最广泛的是电声转换的水声换能器,即转换电能为水中声能的水声发射器,以及转换水中声能为电能的水声接收器(即水听器)。水是声阻抗率较高的媒质,因此要发射较大声功率就必须有较大的力。
    常用的水声换能器按其基本换能机理分为可逆式和不可逆式两大类。可逆式(可作接收器)的有:电动、静电、可变磁阻(电磁)、磁致伸缩和压电水声换能器。不可逆式(不可作接收器)的有:调制流体(流体动力)、气动(如气枪)、化学能(如信号弹)、机声(如扫水雷声源)等。
    20世纪60年代以来,为了实现声呐的远程探测,发展了不少新的换能材料、结构振动方式和换能机理;发展了工作在低频、宽带、大功率和深水中的发射器,具有高灵敏度、宽带、低噪声等性能的水听器;出现了新型的水声换能器,如复合压电陶瓷水听器、凹型弯张换能器、利用亥姆霍兹共鸣器原理制成的低频水听器、应用射流开关技术的调制流体式换能器、声光换能器等。
    水声参量阵分为参量发射阵和参量接收阵两类。它利用声波在水内传播时产生的非线性相互作用。如发射器同时发出两个频率相近的高频波(又称原波),由于非线性相互作用,则还产生差频波及和频波,这也可看作为一种新的转换概念,参量发射阵利用的就是差频波。
    参量发射阵可分为原波饱和与无饱和两种情况(饱和是当声波的振幅足够大时产生的,这时,近场原波的振幅不再随声源振幅的增大而增大),有四种典型模式:无饱和近场吸收限制、无饱和远场球面扩展限制、饱和近场限制、饱和远场限制。对这四种典型模式的理论研究结果与实验符合得很好。对无饱和的两种模式,差频波的声压都正比于两原波声压的乘积。
    参量阵的主要缺点是效率很低,它的独特优点是可以利用小尺寸换能器获得低频、宽频带、低旁瓣或无旁瓣、探照灯式的尖锐波束,应用于需要低频高分辨率探测中。参量阵已进入实用阶段,特别适用于海底浅层地质的勘探、水下埋藏物的探测、浅海特定简正波的激励等。
    参量接收阵近来也受到注意,其工作原理与参量发射阵相同,非线性相互作用在高声强的泵波和待接收的声波之间发生,在泵波的声轴上接收差频或和频信号。不过,参量接收阵的技术实现难度更大,实际应用为时尚早。
    海洋及其边界(海面和海底)组成复杂多变的水声传播媒质,它的复杂多变性主要表现在随海区和季节而变化,从而有不同的传播规律。
    从声源发出的声信号在传播过程中逐渐损失能量,这种传播损失分为扩展和衰减。扩展损失表示声波的波阵面从声源向外不断扩展的简单几何效应。但实际上声波经常是在类似于波导中的传播,可以在这种波导(称为声道)中定向性地传播很长距离。衰减损失包括吸收、散射和声能漏出声道的效应。造成吸收的原因是海水的粘滞性、热传导性、海水中硫酸镁和硼酸-硼酸盐离子的弛豫机构。吸收使声强以指数形式随距离下降,吸收系数一般正比于频率二次方,因此远程声呐都选用较低频率。造成散射的原因包括海中气泡、悬浮粒子、不均匀水团、浮游生物以及边界的不平整性,散射一般远小于吸收所引起的衰减。声能漏出声道的效应则因具体声道而异。
    产生海洋传播声道的条件是海洋边界及特定声速剖面。声速剖面就是海洋的声速分层结构。海水中的声速是温度、盐度和静压力(深度)的函数。它大致分为三层:表面层、主跃变层和深海等温层。
    表面层中的声速对温度和风的作用很敏感,有明显的季节变化和日变化。在表面层以下约千米深度内,温度随深度而下降,使声速也随深度下降,具有较强的负声速梯度,称为主跃变层。最下面的称为深海等温层,层中海水处于冷而均匀的稳定状态,声速随着深度的增加而增加。在主跃变层的负声速梯度和深海等温层的正声速梯度之间存在一个定速极小值(声道轴),形成较稳定的深海声道--声发声道。
    在沿岸浅海及大陆架上,声速剖面受较多的因素影响,有较强的地区变异性和短时间不稳定性。但平均而言,仍有比较明显的季节特征。在冬季的典型声速剖面是等温层,在夏季往往是负跃层或负梯度。
    在浅海,由海面和海底构成浅海声道,声波在声道中由海面和海底不断反射而传播。海底的声反射特性,特别是小掠射角的海底反射损失,是浅海声场分析和声呐作用距离预报的重要参量,它决定于海底的底质和结构。
    当声传播水平距离不特别远(几百千米以内)时,往往把海洋看作分层媒质,分层媒质中的波动理论在60年代已达到较为成熟的阶段。
    海洋中存在着大量散射体以及起伏不平的界面。当声源发射声波以后,碰到这些散射体,就会引起声能在各个方向上重新分配,即产生散射波。其中返回到接收点的散射波的总和称为混响。混响是主动式声呐的主要干扰。由产生混响的散射体不同性质,可分为体积混响、海面混响和海底混响。
    对混响的研究大体上分为能量规律和统计规律两个方面。混响的能量规律的理论分析以声波在海洋中的传播理论和散射理论的结合为出发点,主要涉及混响强度同信号参量和环境因素的联系以及衰减规律。 随着声纳信号处理技术的发展,接收机输出数据率不断提高,靠声纳员来辨认出目标并测定其参量是很困难的,这就发展了机器辅助检测和自动检测的技术。
    虽然水声信号处理的理论与雷达很相似,但由于水声信道的复杂性,仍有许多不同之处。
 楼主| 发表于 2006-8-21 08:59 | 显示全部楼层
音 乐 声 学   

    音乐声学是研究乐音和乐律的物理问题的科学。
    对乐器和人的发音原理的研究是从激励器、共鸣器、辐射器三大部件来入手,以求得最高的发音效率和优美的音色。简单的响器,其激励、共鸣、辐射合为一体,如锣;电子合成乐器则用电路来模仿激励器和共鸣器,辐射器就是扬声器。
    音乐家以音强、音高、音色(或称为音品)作为乐音三大要素,客观上决定任一声音的物理参量是声压、时程和频谱。对乐音而言,声压决定它的强度或响度感觉,频谱决定它的音色。音高在声学上称为音调,由频谱中的基音频率决定。若基音消失,音调的感觉不变,由谐音系列的结构决定。
    乐音一般不是稳定持续的周期信号,其时程可分为增长、稳定、衰减三个段落。不同类型的乐音,三个段落的时间不同。例如弹弦音和拨弦音的增长段比拉弦音的短促得多,并且几乎没有稳定段。在增长和衰减段,乐音的频谱与稳定段可以有显著的不同。因此,乐音的音色与时程的关系很大。对乐器的每个部件,都可以分析上述参量,以总结出音质优美的乐器的最佳声学条件。
    例如,世界公认最佳的意大利斯特拉迪瓦里小提琴,其物理参量有哪些特色,现在已有了深入的研究。又如研究共鸣良好的歌声,发现其频谱中2.5~3kHz附近有一特殊的共振峰等。此外,各部件之间的耦合对于达到最佳声学条件也很重要。充分了解各部件的振动原理和它们之间的耦合,乐器的制作和研究才有科学根据。
    除上述参量外,单件乐器和管弦乐队的声压动态范围、频率范围和长期平均频谱是指导录声(即录音)、调音、重放,使之达到最好听感的基本参量,也属音乐声学的范畴。
 楼主| 发表于 2006-8-21 09:00 | 显示全部楼层
语 言 声 学   

    语言声学也称为语言通信,是近代声学中的一个分支学科,是用声学方法研究语言的产生、传递、接受和转换的一门科学。
    语言是既具有自然属性又具有社会属性的复杂的信号系统。声学方法不但直接用于研究语言信号的声学特性本身,而且用于研究语言的心理特性和生理特性。语言分析、合成和感知是语言声学研究的主要方法。在研究语言时,声学特性是主要的;在研究音节时,便要考虑到音节结构;而在研究词句时,则又需要考虑语法和语意。因此,在语言声学研究中,还涉及到语言学和信息论。 早在一二千年以前,人们便对语言进行了研究。由于没有适当的仪器设备,长期以来,一直是由耳倾听和用口模仿来进行研究。因此,这种语言研究常被称为"口耳之学",所以对语声只是停留在定性的描写上。
    19世纪60年代,亥姆霍兹应用声学方法对元音和歌唱进行了研究,从而奠定了语言声学的基础;1876年电话的发明,以及电话通信的飞速发展,促进了语言信号的声学特性及其与语言感知的关系的研究。电子技术的发展,为语声的定量研究,提供了有力的手段。
    20世纪40年代,一种语言声学的专用仪器--语图仪问世了。它可以把语声的声学特征用语图表示出来,从而得出了"可见语言"。这对语言声学的发展作出了重要贡献。50年代对语言产生的声学理论开始有了系统的论述,到了60年代语言声学研究得到了计算技术的帮助,使得过去受人力、时间限制的大量的话声统计分析工作,得以在电子计算机上进行。在此基础上,语言声学不论在基础研究方面,还是在技术应用方面,都取得了突破性的进展。
    反过来,电子技术和计算技术的发展,又对语言声学提出了新的课题。当前,计算机的语言输入和语言输出、自动应答装置、自动语言识别、嗓音鉴别、语言理解系统等,都迫切需要对语言信号的许多基本问题作出新的解答。
    根据声学观点,语言的产生可分成三个部分:声源激励、声道调制和声波辐射,其中决定语声性质的是声源激励和声道调制。语言产生的研究内容包括:激励声源的特性、发声器官的工作状态和声道的声学性质等。所采用的研究方法,大多是用电-力-声类比的方法,以建立声带波产生的模型、声道模型和语言产生的参量模型。
    实验表明,由声道形状决定的共振峰,是主要的信息要素。目前,从语声中准确地分离出声源特性和声道调制特性来,还存在许多困难。为研究语言的产生,除对语声的物理特性进行研究之外,还对发声生理进行研究,如利用肌电图配合声学测量,来研究发声器官的肌肉活动。
    语言分析是用分析的方法来研究语言的自然特性。其主要内容是:分析语声的时间特性和频率特性,以及发声器官的发声分析。语声的时间特性和频率特性包括:波形、长度、强度随时间的变化、短时间相关函数和功率谱、短时频谱分析、长时平均功率谱、共振峰分析和基频分析等。在说话时,语声是处在语流之中的。从一个短暂的时间窗口去观察语声的声学特性,便是短时频谱分析,而长时平均频谱则表示语言的统计平均特性。共振峰分析,是根据语音的频谱和语言产生的原理,推算出声道的共振频率。
    基频分析,是从语言波中提取出声带振动的基本频率,其方法既可以是测量基频本身,也可以是利用谐波来求出基频。基频随时间的变化方式,构成了声调和语调,它们是重要的语声特征。在专用的语言分析设备问世以前,曾采用浪纹计和示波器分析语言波形,以后又使用滤波器组或频率分析仪。但是,对于大量的多变的语声来说,这些分析方法都有很大的局限性。因此,对语言特性的认识也受到一定的限制。
    40年代出现的语图仪,可以把可听的语言描绘成可见图样--语图。这便是所谓"可见语言"。语图可以表现语声的三维特性,横轴代表时间,纵轴代表频率,而黑度代表强弱。语言频谱显示设备可以在一个电视屏幕上把说的话用语图的形式显示出来。此外,还发展了许多用于语言分析的专用软件,以便于利用计算机进行语言分析。
    用人工模拟语言产生的过程,以合成出语言来,供直接应用或进行研究。最初是用机械的方法来模拟人讲话。在18世纪便做出了可以产生连续语言的机器。一直到20世纪30年代还在研制结构更为复杂的机械发声装置。它们所发出的语声的音质都很不好。
    1939年出现了所谓语言合成仪。它是用电子线路来模拟发声器官的动作。其工作方式很像电子琴。一个受过训练的人,可以用它"演奏"出可以听懂的语言。另一种语言合成方法称为语图还音。把语图用墨线画在透明胶带上,再用一个音轮调制线光源来照射走动的胶带。根据胶带透射过去的光通量的变化放出语声来。由于在绘制语图时改动方便,所以语图还音装置曾在语言合成中起过重要作用。
    20世纪50年代开始采用传输线来模拟声道。既可以整体模拟,也可以分段模拟。由一个适当的电源激励,经过放大器和扬声器,便可发出语声来。改变传输线的参量,便可以发出不同的语声。现在,利用电子计算机,根据语言产生的原理,把它写成一些发声规则和参量,再将其组合成语言。
    自动语言识别是根据语言信号的声学待征,有时加上语言的结构规则和语意线索,由机器认出输入的语言来。可以根据使用要求,由机器以不同的方式作出响应,如打印出与该语声相应的文字、符号,完成规定的动作等。它分为孤立单词自动识别和连续语言自动识别,自20世纪50年代开始系统而广泛的研究。对单个人小量词汇的自动识别已取得了较大的进展;但是,在更换发话人和扩大词汇容量方面现在还有困难。
    自动语言识别的实现,面对着三个重大的语言声学基础课题:首先,语言知觉的基本单位是什么,是音素、音节还是单词;其次,是否存在音素的心理常量,如果有,它是什么;最后,如何对连续语言进行分段。
    现在,有限词汇的、在一定条件下适用的自动语言识别装置,已进入实际应用。适用于多数发话人的、不怕环境噪声干扰的和无限词汇的自动语言识别系统还有待于大量的基础研究。
    嗓音鉴别也称为发话人鉴别,它包括两个方面:发话人鉴定和发话人辨别。发话人鉴定是根据发话人已有贮的嗓音(口声)材料,与发话人现时提供的材料相比较,鉴定是不是发话人本人在说话。这可用于银行业务中,存款人用嗓音代替印鉴,以便于通过电话来办理存取手续。发话人辨别是从大量的已有的嗓音样本中,辨别出哪一个与发话人的嗓音最相似或者与它们都不相似。
    与自动语言识别不同,嗓音鉴别在于利用语声当中代表发话人个性特征的部分,而自动语言识别则是利用不同发话人或同一发话人在不同时刻发同一语声时的共性特征。嗓音鉴别多采用听音-看图法,即由有训练的专业人员审听嗓音材料、检视语图特征--声纹,以作出判断。嗓音鉴别已在法律程序中作为一种证据使用。
    声码器是达德利在1939年发明的,由于语音质量较差、体积庞大、造价高昂,以致很长时间未能获得广泛应用。近年来,应用大规模集成电路做成的声码器,已可随身携带,其音质与普通电话相仿。因而不只可用于政府首脑通信和军事通信,而开始进入商用通信。
    根据工作原理,声码器分为:通道声码器、半声码器(语声激励声码器)、相关声码器、谐和声码器、共振峰声码器、线性预测声码器和同态声码器等多种,发展较多的是通道声码器和线性预测声码器。用声码器来压缩语言信号的数码率,是实现人-机对话的重要手段。

来自:声学世界
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-24 15:24 , Processed in 0.080714 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表