马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?我要加入
x
有图形显示,很形象。
- function [pso F] = pso_2D()
- % FUNCTION PSO --------USE Particle Swarm Optimization Algorithm
- %global present;
- % close all;
- pop_size = 10; % pop_size 种群大小
- part_size = 2; % part_size 粒子大小, ** =n-D
- gbest = zeros(1,part_size+1); % gbest 当前搜索到的最小的值
- max_gen = 80; % max_gen 最大迭代次数
- region=zeros(part_size,2); % 设定搜索空间范围
- region=[-3,3;-3,3]; % **每一维设定不同范围
- rand('state',sum(100*clock)); % 重置随机数发生器状态
- arr_present = ini_pos(pop_size,part_size); % present 当前位置,随机初始化,rand()的范围为0~1
- v=ini_v(pop_size,part_size); % 初始化当前速度
- pbest = zeros(pop_size,part_size+1); % pbest 粒子以前搜索到的最优值,最后一列包括这些值的适应度
- w_max = 0.9; % w_max 权系数最大值
- w_min = 0.4;
- v_max = 2; % **最大速度,为粒子的范围宽度
- c1 = 2; % 学习因子
- c2 = 2; % 学习因子
- best_record = zeros(1,max_gen); % best_record记录最好的粒子的适应度。
- % ————————————————————————
- % 计算原始种群的适应度,及初始化
- % ————————————————————————
- arr_present(:,end)=ini_fit(arr_present,pop_size,part_size);
- % for k=1:pop_size
- % present(k,end) = fitness(present(k,1:part_size)); %计算原始种群的适应度
- % end
- pbest = arr_present; %初始化各个粒子最优值
- [best_value best_index] = min(arr_present(:,end)); %初始化全局最优,即适应度为全局最小的值,根据需要也可以选取为最大值
- gbest = arr_present(best_index,:);
- %v = zeros(pop_size,1); % v 速度
- % ————————————————————————
- % 迭代
- % ————————————————————————
- % global m;
- % m = moviein(1000); %生成帧矩阵
- x=[-3:0.01:3];
- y=[-3:0.01:3];
- z=@(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- - 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- - 1/3*exp(-(x+1).^2 - y.^2);
- for i=1:max_gen
- grid on;
- % plot3(x,y,z);
- % subplot(121),ezmesh(z),hold on,grid on,plot3(arr_present(:,1),arr_present(:,2),arr_present(:,3),'*'),hold off;
- % subplot(122),ezmesh(z),view([145,90]),hold on,grid on,plot3(arr_present(:,1),arr_present(:,2),arr_present(:,3),'*'),hold off;
- ezmesh(z) ,hold on,grid on,plot3(arr_present(:,1),arr_present(:,2),arr_present(:,3),'*'),hold off;
- drawnow
- F(i)=getframe;
- % ezmesh(z)
- % % view([-37,90])
- % hold on;
- % grid on;
- % % plot(-0.0898,0.7126,'ro');
- % plot3(arr_present(:,1),arr_present(:,2),arr_present(:,3),'*'); %改为三维
- % axis([-2*pi,2*pi,-pi,pi,-50,10]);
- % hold off;
- pause(0.01);
- % m(:,i) = getframe; %添加图形
- w = w_max-(w_max-w_min)*i/max_gen;
- % fprintf('# %i 代开始!\n',i);
- % 确定是否对打散已经收敛的粒子群——————————————————————————————
- reset = 0; % reset = 1时设置为粒子群过分收敛时将其打散,如果=1则不打散
- if reset==1
- bit = 1;
- for k=1:part_size
- bit = bit&(range(arr_present(:,k))<0.1);
- end
- if bit==1 % bit=1时对粒子位置及速度进行随机重置
- arr_present = ini_pos(pop_size,part_size); % present 当前位置,随机初始化
- v = ini_v(pop_size,part_size); % 速度初始化
- for k=1:pop_size % 重新计算适应度
- arr_present(k,end) = fitness(arr_present(k,1:part_size));
- end
- warning('粒子过分集中!重新初始化……'); % 给出信息
- display(i);
- end
- end
- for j=1:pop_size
- v(j,:) = w.*v(j,:)+c1.*rand.*(pbest(j,1:part_size)-arr_present(j,1:part_size))...
- +c2.*rand.*(gbest(1:part_size)-arr_present(j,1:part_size)); % 粒子速度更新 (a)
- % 判断v的大小,限制v的绝对值小于5————————————————————————————
- c = find(abs(v)>6); %**最大速度设置,粒子的范围宽度
- v(c) = sign(v(c))*6; %如果速度大于3.14则,速度为3.14
- arr_present(j,1:part_size) = arr_present(j,1:part_size)+v(j,1:part_size); % 粒子位置更新 (b)
- arr_present(j,end) = fitness(arr_present(j,1:part_size));
- if (arr_present(j,end)>pbest(j,end))&(Region_in(arr_present(j,:),region)) % 根据条件更新pbest,如果是最小的值为小于号,相反则为大于号
- pbest(j,:) = arr_present(j,:);
- end
- end
- [best best_index] = max(arr_present(:,end)); % 如果是最小的值为min,相反则为max
- if best>gbest(end)&(Region_in(arr_present(best_index,:),region)) % 如果当前最好的结果比以前的好,则更新最优值gbest,如果是最小的值为小于号,相反则为大于号
- gbest = arr_present(best_index,:);
- end
- best_record(i) = gbest(end);
- display(i);
- end
- pso = gbest;
- display(gbest);
- % figure;
- % plot(best_record);
- % movie2avi(F,'pso_2D1.avi','compression','MSVC');
- % ***************************************************************************
- % 计算适应度
- % ***************************************************************************
- function fit = fitness(present)
- fit=3*(1-present(1)).^2.*exp(-(present(1).^2) - (present(2)+1).^2) ... %**需要求极值的函数,本例即peaks函数
- - 10*(present(1)/5 - present(1).^3 - present(2).^5).*exp(-present(1).^2-present(2).^2) ...
- - 1/3*exp(-(present(1)+1).^2 - present(2).^2);
- function ini_present=ini_pos(pop_size,part_size)
- ini_present = 3*rand(pop_size,part_size+1); %初始化当前粒子位置,使其随机的分布在工作空间 %** 6即为自变量范围
- function ini_velocity=ini_v(pop_size,part_size)
- ini_velocity =3/2*(rand(pop_size,part_size)); %初始化当前粒子速度,使其随机的分布在速度范围内
- function flag=Region_in(pos_present,region)
- [m n]=size(pos_present);
- flag=1;
- for j=1:n-1
- flag=flag&(pos_present(1:j)>=region(j,1))&(pos_present(1:j)<=region(j,2));
- end
- function arr_fitness=ini_fit(pos_present,pop_size,part_size)
- for k=1:pop_size
- arr_fitness(k,1) = fitness(pos_present(k,1:part_size)); %计算原始种群的适应度
- end
复制代码
[ 本帖最后由 风花雪月 于 2006-10-12 09:06 编辑 ] |