|
看看这个,在网上搜到的
- //*****************************************************************
- // Iterative template routine -- GMRES
- //
- // GMRES solves the unsymmetric linear system Ax = b using the
- // Generalized Minimum Residual method
- //
- // GMRES follows the algorithm described on p. 20 of the
- // SIAM Templates book.
- //
- // The return value indicates convergence within max_iter (input)
- // iterations (0), or no convergence within max_iter iterations (1).
- //
- // Upon successful return, output arguments have the following values:
- //
- // x -- approximate solution to Ax = b
- // max_iter -- the number of iterations performed before the
- // tolerance was reached
- // tol -- the residual after the final iteration
- //
- //*****************************************************************
- template < class Matrix, class Vector >
- void
- Update(Vector &x, int k, Matrix &h, Vector &s, Vector v[])
- {
- Vector y(s);
- // Backsolve:
- for (int i = k; i >= 0; i--) {
- y(i) /= h(i,i);
- for (int j = i - 1; j >= 0; j--)
- y(j) -= h(j,i) * y(i);
- }
- for (int j = 0; j <= k; j++)
- x += v[j] * y(j);
- }
- template < class Real >
- Real
- abs(Real x)
- {
- return (x > 0 ? x : -x);
- }
- template < class Operator, class Vector, class Preconditioner,
- class Matrix, class Real >
- int
- GMRES(const Operator &A, Vector &x, const Vector &b,
- const Preconditioner &M, Matrix &H, int &m, int &max_iter,
- Real &tol)
- {
- Real resid;
- int i, j = 1, k;
- Vector s(m+1), cs(m+1), sn(m+1), w;
-
- Real normb = norm(M.solve(b));
- Vector r = M.solve(b - A * x);
- Real beta = norm(r);
-
- if (normb == 0.0)
- normb = 1;
-
- if ((resid = norm(r) / normb) <= tol) {
- tol = resid;
- max_iter = 0;
- return 0;
- }
- Vector *v = new Vector[m+1];
- while (j <= max_iter) {
- v[0] = r * (1.0 / beta); // ??? r / beta
- s = 0.0;
- s(0) = beta;
-
- for (i = 0; i < m && j <= max_iter; i++, j++) {
- w = M.solve(A * v[i]);
- for (k = 0; k <= i; k++) {
- H(k, i) = dot(w, v[k]);
- w -= H(k, i) * v[k];
- }
- H(i+1, i) = norm(w);
- v[i+1] = w * (1.0 / H(i+1, i)); // ??? w / H(i+1, i)
- for (k = 0; k < i; k++)
- ApplyPlaneRotation(H(k,i), H(k+1,i), cs(k), sn(k));
-
- GeneratePlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
- ApplyPlaneRotation(H(i,i), H(i+1,i), cs(i), sn(i));
- ApplyPlaneRotation(s(i), s(i+1), cs(i), sn(i));
-
- if ((resid = abs(s(i+1)) / normb) < tol) {
- Update(x, i, H, s, v);
- tol = resid;
- max_iter = j;
- delete [] v;
- return 0;
- }
- }
- Update(x, m - 1, H, s, v);
- r = M.solve(b - A * x);
- beta = norm(r);
- if ((resid = beta / normb) < tol) {
- tol = resid;
- max_iter = j;
- delete [] v;
- return 0;
- }
- }
-
- tol = resid;
- delete [] v;
- return 1;
- }
- #include <math.h>
- template<class Real>
- void GeneratePlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
- {
- if (dy == 0.0) {
- cs = 1.0;
- sn = 0.0;
- } else if (abs(dy) > abs(dx)) {
- Real temp = dx / dy;
- sn = 1.0 / sqrt( 1.0 + temp*temp );
- cs = temp * sn;
- } else {
- Real temp = dy / dx;
- cs = 1.0 / sqrt( 1.0 + temp*temp );
- sn = temp * cs;
- }
- }
- template<class Real>
- void ApplyPlaneRotation(Real &dx, Real &dy, Real &cs, Real &sn)
- {
- Real temp = cs * dx + sn * dy;
- dy = -sn * dx + cs * dy;
- dx = temp;
- }
复制代码 |
|