声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2012|回复: 0

[结构振动] 振动结构模态浅析

[复制链接]
发表于 2020-11-26 15:52 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
考虑一个单自由度的弹簧-质量系统,系统刚度、质量分别为k和m,则该系统的自由振动按ω=√k/m 的频率做往复运动。假设将质量块数目增多,系统将成为一个多自由度模型,我们往往会将多自由度系统展开到模态空间中,将系统的整体振动表示为各阶频率下的主振型的叠加。在系统中,小质量块的数目决定了主振型的阶数,而各阶主振型即为我们所理解的模态的概念。
1.png
图1

上述中提到的系统都是离散模型。如果我们再进一步的把系统考虑为一维的横梁模型,则系统变为连续体模型,它可看成由无穷的小质量块和弹簧组成,则梁理论上存在无穷阶模态,且各阶模态是唯一确定的。而实际梁的振动都是以较低阶的模态为主进行振动的,在工程处理中,我们也往往将梁模型质量集中等效为多自由度模型。

那么问题来了,根据集中质量平均分配原则,梁模型在工程简化中到底要考虑为一个集中质量、两个集中质量还是更多?考虑不同数目的集中质量对于求解的各阶模态差异是否有较大差异?

答案是否定的,无论梁模型划分为几段集中质量,它们所对应的模型求解出的低阶模态往往是相差不大的。所以常常在工程中我们可以根据需要,将结构简化为自己需要的自由度来进行模态试验。

同时在结构模态试验中,结构的支承方案对于结构的模态到底是怎样影响的?
2.png
图2

如图2所示,一个梁模型,两端用刚度为k(0-∞) 的弹簧约束。假设k 刚开始为0,即梁为自由状态(无约束),则梁的振动是由刚体运动(频率为0Hz)和自身的模态运动组成;将k慢慢变大,梁的振动是由梁的刚体运动(频率由0Hz慢慢增长)和自身的模态振动组成;k 无穷大时,梁被完全约束,梁的振动是由自身的模态所决定。

所以在结构模态试验中,测出的共振频率应包括支承频率和结构自身模态频率,且结构自身模态频率大小跟支承刚度有关。

来源:漫步力学公众号(ID:Walking-mechanics),原文来自天津大学 作者:高天。

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-19 18:45 , Processed in 0.075426 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表