声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1758|回复: 0

[弹性力学] 弹性力学、塑性力学、流变学基本定义及关系!

[复制链接]
发表于 2020-4-22 09:12 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
弹性力学
      弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。

  弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。

  弹性力学的发展简史
  人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。

  弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。

  同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。

  在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。

  第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。

  1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。

  在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。

  从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。

  弹性力学的基本内容
  弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。

  连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。

  求解一个弹性力学问题,就是设法确定弹性体中各点的位移、应变和应力共15个函数。从理论上讲,只有15个函数全部确定后,问题才算解决。但在各种实际问题中,起主要作用的常常只是其中的几个函数,有时甚至只是物体的某些部位的某几个函数。所以常常用实验和数学相结合的方法,就可求解。

  数学弹性力学的典型问题主要有一般性理论、柱体扭转和弯曲、平面问题、变截面轴扭转,回转体轴对称变形等方面。

  在近代,经典的弹性理论得到了新的发展。例如,把切应力的成对性发展为极性物质弹性力学;把协调方程(保证物体变形后连续,各应变分量必须满足的关系)发展为非协调弹性力学;推广胡克定律,除机械运动本身外,还考虑其他运动形式和各种材科的物理方程称为本构方程。对于弹性体的某一点的本构方程,除考虑该点本身外还要考虑弹性体其他点对该点的影响,发展为非局部弹性力学等。

弹性力学中的基本假定
  (1)假定物体是连续的,就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
  (2)假定物体是完全弹性的,就是假定物体完全服从胡克定律——应变与引起该应变的那个应力分量成比例。
  (3)假定物体是均匀的,就是整个物体是由同一材料组成的。
  (4)假定物体是各向同性的,就是物体内一点的弹性在所有各个方向都相同。
  (5)假定位移和形变是微小的。
塑性力学
    塑性力学是固体力学的一个分支,它主要研究物体超过弹性极限后所产生的永久变形和作用力之间的关系以及物体内部应力和应变的分布规律。

  塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。

  塑性力学的发展简史
  塑性变形现象发现较早,然而对它进行力学研究,是从1773年库仑提出土的屈服条件开始的。

  特雷斯卡于1864年对金属材料提出了最大剪应力屈服条件。随后圣维南于1870年提出在平面情况下理想刚塑性的应力-应变关系,他假设最大剪应力方向和最大剪应变率方向一致,并解出柱体中发生部分塑性变形的扭转和弯曲问题以及厚壁筒受内压的问题。莱维于1871年将塑性应力-应变关系推广到三维情况。1900年格斯特通过薄管的联合拉伸和内压试验,初步证实最大剪应力屈服条件。

  此后20年内进行了许多类似实验,提出多种屈服条件,其中最有意义的是米泽斯1913年从数学简化的要求出发提出的屈服条件(后称米泽斯条件)。米泽斯还独立地提出和莱维一致的塑性应力-应变关系(后称为莱维-米泽斯本构关系)。泰勒于1913年,洛德于1926年为探索应力-应变关系所作的实验都证明,莱维-米泽斯本构关系是真实情况的一级近似。

  为更好地拟合实验结果,罗伊斯于1930年在普朗特的启示下,提出包括弹性应变部分的三维塑性应力-应变关系。至此,塑性增量理论初步建立。但当时增量理论用在解具体问题方面还有不少困难。早在1924年亨奇就提出了塑性全量理论,由于便于应用,曾被纳戴等人,特别是伊柳辛等苏联学者用来解决大量实际问题。

  虽然塑性全量理论在理论上不适用于复杂的应力变化历程,但是计算结果却与板的失稳实验结果很接近。为此在1950年前后展开了塑性增量理论和塑性全量理论的辩论,促使从更根本的理论基础上对两种理论进行探讨。另外,在强化规律的研究方面,除等向强化模型外,普拉格又提出随动强化等模型。

  20世纪60年代以后,随着有限元法的发展,提供恰当的本构关系已成为解决问题的关键。所以70年代关于塑性本构关系的研究十分活跃,主要从宏观与微观的结合,从不可逆过程热力学以及从理性力学等方面进行研究。

  在实验分析方面,也开始运用光塑性法、云纹法、散斑干涉法等能测量大变形的手段。另外,由于出现岩石类材料的塑性力学问题,所以塑性体积应变以及材料的各向异性、非均匀性、弹塑性耦合、应变弱化的非稳定材料等问题正在研究之中。

  塑性力学的内容
  人们对塑性变形基本规律的认识主要来自于实验。从实验中找出在应力超出弹性极限后材料的特性,将这些特性进行归纳并提出合理的假设和简化模型,确定应力超过弹性极限后材料的本构关系,从而建立塑性力学的基本方程。解出这些方程,便可得到不同塑性状态下物体内的应力和应变。

  塑性力学研究的基本试验有两个。一是简单拉伸实验,另一是静水压实验。从材料简单拉伸的应力-应变曲线可以看出,塑性力学研究的应力与应变之间的关系是非线性的,它们的关系也不是单值对应的。而静水压可使材料可塑性增加,使原来处于脆性状态的材料转化为塑性材料。

  为了便于计算,人们往往根据实验结果建立一些假设。比如:材料是各向同性和连续的;材料的弹性性质不受影响;只考虑稳定材料;与时间因素无关等。

  在复杂应力状态下,各应力分量成不同组合状况的屈服条件,以及应力分量和应变分量之间的塑性本构关系是塑性力学的主要研究内容,也是分析塑性力学问题时依据的物理关系。

  屈服条件是判断材料处于弹性阶段还是处于塑性阶段的根据。对金属材料,最常用的屈服条件有最大剪应力屈服条件(又称特雷斯卡条件)和弹性形变比能屈服条件(又称米泽斯条件)。这两个屈服条件数值接近,它们的数学表达式都不受静水压力的影响,而且基本符合实验结果。

  对于理想塑性模型,在经过塑性变形后,屈服条件不变。但如果材料具有强化性质,则屈服条件将随塑性变形的发展而改变,改变后的屈服条件称为后继屈服条件或加载条件。

  反映塑性应力-应变关系的本构关系,一般应以增量形式给出,这是因为塑性力学中需要考虑变形的历程,而增量形式可以反映出变形的历程,反映塑性变形的本质。用增量形式表示塑性本构关系的理论称为塑性增量理论。

  研究表明,应力和应变的增量关系与屈服条件有关。增量理论的本构关系在理论上是合理的,但应用起来比较麻烦,因为需要积分整个变形路径才能得到最后的结果。因此,在塑性力学中又发展出塑性全量理论,即采用全量形式表示塑性本构关系的理论。

  除上述基本理论外,塑性力学还包括简单塑性问题、受内压厚壁圆筒问题、长柱体的塑性自由扭转问题、塑性力学平面问题、塑性极限分析;塑性动力学;粘塑性理论;塑性稳定性等多方面内容。

  塑性力学在工程实际中有广泛的应用。例如研究如何发挥材料强度的潜力;如何利用材料的塑性性质以便合理选材,制定加工成型工艺;塑性力学理论还用于计算材料的残余应力等。

流变学
    流变学是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。

  张悉妮发明的“SEE技术及其行业应用和衍生产品技术”就是一个应用“电子流变”理论成功开发出“实用技术”和“照明产品”、“绿色照明新光源——聪明灯”的实际例子。

  因此,流变论及其流变学和流变技术,在物理应用的深度和广度上将越来越发挥出重大作用。

  流变学的发展简史
  流变学出现在20世纪20年代。学者们在研究橡胶、塑料、油漆、玻璃、混凝土,以及金属等工业材料;岩石、土、石油、矿物等地质材料;以及血液、肌肉骨骼等生物材料的性质过程中,发现使用古典弹性理论、塑性理论和牛顿流体理论已不能说明这些材料的复杂特性,于是就产生了流变学的思想。英国物理学家麦克斯韦和开尔文很早就认识到材料的变化与时间存在紧密联系的时间效应。

  麦克斯韦在1869年发现,材料可以是弹性的,又可以是粘性的。对于粘性材料,应力不能保持恒定,而是以某一速率减小到零,其速率取决于施加的起始应力值和材料的性质。这种现象称为应力松弛。许多学者还发现,应力虽然不变,材料棒却可随时间继续变形,这种性能就是蠕变或流动。

  经过长期探索,人们终于得知,一切材料都具有时间效应,于是出现了流变学,并在20世纪30年代后得到蓬勃发展。1929年,美国在宾厄姆教授的倡议下,创建流变学会;1939年,荷兰皇家科学院成立了以伯格斯教授为首的流变学小组;1940年英国出现了流变学家学会。当时,荷兰的工作处于领先地位,1948年国际流变学会议就是在荷兰举行的。法国、日本、瑞典、澳大利亚、奥地利、捷克斯洛伐克、意大利、比利时等国也先后成立了流变学会。

  流变学的发展同世界经济发展和工业化进程密切相关。现代工业需要耐蠕变、耐高温的高质量金属、合金、陶瓷和高强度的聚合物等,因此同固体蠕变、粘弹性和蠕变断裂有关的流变学迅速发展起来。核工业中核反应堆和粒子加速器的发展,为研究由辐射产生的变形打开新的领域。

  在地球科学中,人们很早就知道时间过程这一重要因素。流变学为研究地壳中极有趣的地球物理现象提供了物理-数学工具,如冰川期以后的上升、层状岩层的褶皱、造山作用、地震成因以及成矿作用等。对于地球内部过程,如岩浆活动、地幔热对流等,现在则可利用高温、高压岩石流变试验来模拟,从而发展了地球动力学。

  在土木工程中,建筑的土地基的变形可延续数十年之久。地下隧道竣工数十年后,仍可出现蠕变断裂。因此,土流变性能和岩石流变性能的研究日益受到重视。

  在力、热、声、光、电领域,有广泛的应用。如,在“张悉妮聪明灯实验室”里,就发生了一系列新的电灯故事。再一次证明了,“一切现代文明,都是从电灯开始的”这一论断。电灯,如同一位百岁人瑞一样,跨入了“19”、“20”、“21”三个世纪。现在,在我们的生活里常见的电灯主要有三类,一类叫“白炽灯”,一类叫“荧光灯”,一类叫“聪明灯”。“白炽灯”是1879年爱迪生的发明,它是电灯的起点;“荧光灯”是1938年飞利浦的发明,它是电灯的壮士;“聪明灯”是2003年张悉妮的发明,它是电灯的新宠。这都是流变理论在流变学和流变技术领域得到广泛应用的证例。

  流变学的研究内容
  流变学研究内容是各种材料的蠕变和应力松弛的现象、屈服值以及材料的流变模型和本构方程。

  材料的流变性能主要表现在蠕变和应力松弛两个方面。蠕变是指材料在恒定载荷作用下,变形随时间而增大的过程。蠕变是由材料的分子和原子结构的重新调整引起的,这一过程可用延滞时间来表征。当卸去载荷时,材料的变形部分地回复或完全地回复到起始状态,这就是结构重新调整的另一现象。

  材料在恒定应变下,应力随着时间的变化而减小至某个有限值,这一过程称为应力松弛。这是材料的结构重新调整的另一种现象。

  蠕变和应力松弛是物质内部结构变化的外部显现。这种可观测的物理性质取决于材料分子(或原子)结构的统计特性。因此在一定应力范围内,单个分子(或原子)的位置虽会有改变,但材料结构的统计特征却可能不会变化。

  当作用在材料上的剪应力小于某一数值时,材料仅产生弹性形变;而当剪应力大于该数值时,材料将产生部分或完全永久变形。则此数值就是这种材料的屈服值。屈服值标志着材料有完全弹性进入具有流动现象的界限值,所以又称弹性极限、屈服极限或流动极限。同一材料可能会存在几种不同的屈服值,比如蠕变极限、断裂极限等。在对材料的研究中一般都是先研究材料的各种屈服值。

  在不同物理条件下(如温度、压力、湿度、辐射、电磁场等),以应力、应变和时间的物理变量来定量描述材料的状态的方程,叫作流变状态方程或本构方程。材料的流变特性一般可用两种方法来模拟,即力学模型和物理模型:

  在简单情况(单轴压缩或拉伸,单剪或纯剪)下,应力应变特性可用力学流变模型描述。在评价蠕变或应力松弛试验结果时,利用力学流变模型有助于了解材料的流变性能。这种模型已用了几十年,它们比较简单,可用来预测在任意应力历史和温度变化下的材料变形。

  力学模型的流变模型没有考虑材料的内部物理特性,如分子运动、位错运动、裂纹扩张等。当前对材料质量的要求越来越高,如高强度超韧性的金属、高强度耐高温的陶瓷、高强度聚合物等。对它们的研究就必须考虑材料的内部物理特性,因此发展了高温蠕变理论。这个理论通过考虑了固体晶体内部和晶粒颗粒边界存在的缺陷对材料流变性能的影响,表达出材料内部结构的物理常数,亦即材料的物理流变模型。

  流变学的研究方法
  流变学从一开始就是作为一门实验基础学科发展起来的,因此实验是研究流变学的主要方法之一。它通过宏观试验,获得物理概念,发展新的宏观理论。例如利用材料试件的拉压剪试验,探求应力、应变与时间的关系,研究屈服规律和材料的长期强度。通过微观实验,了解材料的微观结构性质,如多晶体材料颗粒中的缺陷、颗粒边界的性质,以及位错状态等基本性质,探讨材料流变的机制。

  对流体材料一般用粘度计进行试验。比如,通过计算球体在流体中因自重作用沉落的时间,据以计算牛顿粘滞系数的落球粘度计法;通过研究的流体在管式粘度计中流动时,管内两端的压力差和流体的流量,以求得牛顿粘滞系数和宾厄姆流体屈服值的管式粘度计法;利用同轴的双层圆柱筒,使外筒产生一定速度的转动,利用仪器测定内筒的转角,以求得两筒间的流体的牛顿粘滞系数与转角的关系的转筒法等。

  对弹性和粘弹性材料的实验方法分为蠕变试验、应力松弛试验和动力试验三种:

  对材料进行蠕变实验一般有对材料试件施加恒定的拉力,以研究材料的拉伸蠕变性能的拉伸法;在专门的剪力仪中对材料施加恒定的剪力,研究材料的剪切蠕变性能;利用三轴仪,对材料试件施加轴向应力和静水压力,研究材料的单向或三向压缩蠕变性能;利用扭转流变仪,对材料试件施加恒定的扭力,研究材料的扭转蠕变性能;以及在梁形试件上施加恒定的弯矩,研究材料挠度蠕变性能的弯曲法等。

  应力松弛实验是将材料试件置于应力松弛试验仪上,使试件产生一恒定的变形,测定试件所受应力随时间的衰减,研究材料的流变性能,也可以计算材料松弛时间的频谱。这种试验也可在弯曲流变仪、扭转流变仪、压缩流变仪上进行,此法适用于高分子材料和金属材料。

  除蠕变和应力松弛这类静力试验外,还可进行动力试验,即对材料试件施加一定频谱范围内的正弦振动作用,研究材料的动力效应。此法特别适用于高分子类线性粘弹性材料。通过这种试验可以求得两个物理量:由于材料发生形变而在材料内部积累起来的弹性能量;每一振动循环的能量耗散。动力试验可以测量能量耗散和频率的关系,通过这个规律可以与蠕变试验比较分析,建立模型。

  在上述的各种试验工作中,还要研究并应用各种现代测量原理和方法,大型电子计算机的出现对流变学领域的研究产生了深远的影响,如对于非线性材料的大应变、大位移的复杂课题已用有限元法或有限差分方法进行研究。

  随着经济和工业化的发展,流变学将有广阔的发展领域,并已逐步渗透到许多学科而形成相应的分支,例如高分子材料流变学、断裂流变力学、土流变学、岩石流变学以及应用流变学等等。在理论研究上,已超出均匀连续介质的概念,开始探索离散介质、非均匀介质以及非相容弹性介质的流变特性。实验原理和测试技术的研究以及电子计算机的应用,将在流变学的发展中显示重要的地位和发挥巨大的作用。



回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-19 20:25 , Processed in 0.073329 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表