声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 3012|回复: 0

[综合讨论] 快速傅里叶变换FFT在MATLAB中的实现

[复制链接]
发表于 2019-7-18 13:10 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
  一、FFT的由来
  首先,为什么要进行傅里叶变换?将时域的信号变换到频域的正弦信号,正弦比原信号更简单,且正弦函数很早就被充分地研究,处理正弦信号比处理原信号更简单。正弦信号的频率保持性:输入为正弦信号,输出仍是正弦信号,幅度和相位可能发生变化,但频率与原信号保持一致,只有正弦信号才拥有这样的性质。
1.png
  对于傅里叶变换的类型:非周期连续信号采用傅里叶变化;周期连续信号采用傅里叶级数;非周期连续离散信号采用离散时间傅里叶变换;周期离散信号采用离散傅里叶级数。
2.png
  四种信号均为 (‐∞,+∞) 上的无穷信号,而计算机只能处理离散的、有限长度的信号。四种傅里叶变换总结如下表所示。

  表1
3.png
  FT、FS、DTFT,至少都有一个域不是离散的,计算机无法处理;DFS满足时域和频率离散的要求,但其时域为无穷长的周期序列;通过对DFS的推导,得到适合计算机计算的离散傅里叶变换 (DFT)。

  从离散傅里叶级数 (DFS) 到离散傅里叶变换 (DFT),周期序列虽为无穷长序列,但是只要知道一个周期的内容,便可知其全貌。因此,周期序列实际上只有N个样值有信息,通过推导可得到DFT、时域和频域 (DFT) 上的有限长序列,可以用来“代表”周期序列,DFT在时域和频域上均离散,且为有限长序列,可以用计算机进行处理。
4.png
  DFT虽好,但是其计算的次数太多,不利于大数据量的计算。FFT是DFT的快速算法可以节省大量的计算时间,其本质仍然是DFT。
5.png

  二、MATLAB中实现FFT 的计算
  MATLAB傅里叶命令有两种:

    · Y= fft(x) ,其中,x 为一个序列(向量),存放采集信号的数据;

    · 另外一种Y= fft(x,n),x 的定义同上,n 定义计算数据的个数,如果n 大于x 的长度,在x 的末尾添加0,使得x 的长度等于n。如果n小于x的长度,截取x 中的前n 个数来进行计算。Y 返回fft 的结果,为一个复数序列(向量),建议采用上一种格式的用法,并且保证 x 的个数为偶数。

  FFT结果的数据长度:时域N 个点,频域为N/2+1个点;x 轴频率点的设置:采样频率为Fs 时,频谱图的最高频率为Fs/2(参照采样定理)。综合上述两点,x 轴的频率点为 (0:1:N/2)*Fs/N。

  复数序列Y的幅值需要进行转换,才能得到与时域中对应信号的幅值。具体计算方法如下:
6.png
  两个基本问题:

    · 采样频率为多少合适?根据采样定理:Fs≥2Fc,实际应用中需要更大的Fs;

    · 需要采集多少个点?

  现对某一时域数据为例进行MATLAB傅里叶变换:

  1. 绘制时域信号
  lear;clc;closeall
  a=textread('C:\Users\Administrator\Desktop\matlab\FFT\TIME_X.txt'); %读取时域数据
  y=a(:,2); %读取时域数据
  Fs=6400; %采集频率
  T=1/Fs; %采集时间间隔
  N=length(y); %采集信号的长度
  t=(0:1:N-1)*T; %定义整个采集时间点
  t=t'; %转置成列向量
  figure
  plot(t,y)
  xlabel('时间')
  ylabel('信号值')
  title('时域信号')
7.png

  2. fft变换
  Y=fft(y); %Y为fft变换结果,复数向量
  Y=Y(1:N/2+1); %只看变换结果的一半即可
  A=abs(Y); %复数的幅值(模)
  f=(0:1:N/2)*Fs/N; %生成频率范围
  f=f'; %转置成列向量

  3. 幅值修正
  A_adj=zeros(N/2+1,1);
  A_adj(1)=A(1)/N; %频率为0的位置
  A_adj(end)=A(end)/N; %频率为Fs/2的位置
  A_adj(2:end-1)=2*A(2:end-1)/N;

  4. 绘制频率幅值图和频谱相位图
  figure
  subplot(2,1,1)
  plot(f,A_adj)
  xlabel('频率(Hz)')
  ylabel('幅值(修正后)')
  title('FFT变换幅值图')
  gridon
  subplot(2,1,2)
  phase_angle=angle(Y); %angle函数的返回结果为弧度
  phase_angle=rad2deg(phase_angle);
  plot(f,phase_angle)
  xlabel('频率(Hz)')
  ylabel('相位角(degree)')
  title('FFT变换相位图')
  grid on
8.png

  三、MATLAB中FFT计算和商业软件LMS Test.lab中FFT计算对比
  相同的时域数据,利用商业软件LMS Test.lab进行FFT计算,计算结果如下图所示。
9.png
  将matlab计算得频谱曲线和LMSTest.lab计算得频谱曲线放在同一图中对比,如下图所示。两种计算方式几乎完全重合,互相验证了计算方式的准确性。
10.png

  来源:声振测试微信公众号,作者:于长帅。

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-1 09:58 , Processed in 0.082566 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表