声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2227|回复: 0

[其他相关] 模态分析方法与步骤

[复制链接]
发表于 2017-8-9 14:58 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
一、模态分析包括下列6种方法,使用何种模态提取方法主要取决于模型大小(相对于计算机的计算能力而言)和具体的应用场合。
1
缩减法(reduced):
该方法为一般结构最常用的方法之一。其原理是在原结构中选取某些重要的节点为自由度,称为主自由度(master degree of freedom),再用该主自由度来定义结构的质量矩阵及刚度矩阵并求出其频率及振动模态,进而将其结果扩展至全部结构。在解题过程中该方法速度较快,但其答案较不准确。
主自由度的选择依照所探讨的模态、结构负载的情况而定:
a. 主自由度的个数至少为所求频率个数的两倍。
b. 选择主自由度的方向为结构最可能振动的方向。
c. 主自由度节点位于较大质量或转动惯量处及刚性较低位置。
d. 如果弯曲模态为主要探讨模态,则可省略旋转自由度。
e. 主自由度的节点位于施力处或非零位移处。
f. 位移限制为零的位置不能选为主自由度节点,因为这种节点具有高刚性的特性。 可以用M命令来定义主自由度。此外,也可由ANSYS自动选择自由度。
2 子空间迭代法(subspace):
通常用于大型结构中,仅探讨前几个振动频率,所得到结果较准确,不需要定义主自由度,但需要较多的硬盘空间及CPU时间。求取的振动模态数应该小于模型全部自由度的一半。
3不对称法(unsymmetrical):
该方法用于质量矩阵或刚度矩阵为非对称时,例如转子系统。其特征值(eigenvalue)为复数,实数部分为自然频率;虚数部分为系统的稳定度,正值表示不稳定,负值表示稳定。
4阻尼法(damped):
该方法用于结构系统具有阻尼现象时,其特征值为复数,虚数部分为自然频率;实数部分为系统的稳定度,正值表示不稳定,负值表示稳定。
5分块兰索斯法(block lanczos):
该方法用于大型结构对称的质量及刚度矩阵,和次空间方法相似,但收敛性更快。
6快速动力法(power dynamics method):
该方法用于非常大的结构(自由度大于100,000)且仅需最小几个模态。该方法质量矩阵采用集中质量法。
二、模态分析中的四个主要步骤:
1. 模型建立:模态分析是线性分析,如果在分析中指定了非线性单元,程序在计算过程中将忽略其非线性行为,故模态分析尽可能选用线性单元。在材料特性中密度DENS一定要定义,以构建质量矩阵;另外必须指定弹性模量EX。材料的性质可以是线性的、非线性的、恒定的或与温度相关的,但非线性性质将被忽略。
2. 选择分析类型和分析选项:进入/SOLU中定义模态分析,声明模态分析方法,结构外力负载(通常指结构约束条件,如果有结构外力,则是预应力问题),主自由度的选择(如选用降阶法)。求解,退出/SOLU。
3. 施加边界条件并求解:进入/SOLU,将所得结果扩展至全结构,求解,并保存至结果文件以便在后处理器中检查结果。
4. 进入/POST1检查结果。
也可以将求解与模态扩展合并在一起,定义完模态分析相关参数后,不求解,先定义模态扩展,然后再求解。

更多资讯信息请关注【CAE技术联盟】微信公众平台!

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-11-28 17:14 , Processed in 0.061927 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表