2000年前,专家会使用光盘形式的美国科学信息研究所(ISI)科学引文索引(SCI)来进行专业分析。2002年,汤森路透公司上线了整合网页平台,大大方便了Web of Science数据库的使用。竞争对手随之而来:爱思唯尔的Scopus(2004年推出)和谷歌学术(测试版于2004年推出)先后上线。
基于网页的工具纷纷问世,它们能轻松比较机构的研究产出和影响,这些工具包括InCites(数据取自Web of Science)和SciVal(数据取自Scopus)等等。使用谷歌学术数据来分析个人被引情况的软件(如2007年发行的Publish or Perish)也出现了。
2005年,加州大学圣地亚哥分校的物理学家Jorge Hirsch提出了h指数,推广了统计研究者个人被引次数的做法。1995年以来,人们对期刊影响因子的兴趣也逐步增强(见“影响因子热”一节)。
(3)保护卓越的本地性研究。在很多地方,研究成果的杰出性等同于在英文期刊上发表论文。比方说,西班牙法律鼓励学者在高影响力英文期刊上发表论文。当期刊影响因子的计算依赖Web of Science,而这一平台基于美国,以英语期刊为主。这种偏见在社会科学和人文科学领域尤其成问题,因为这些的研究研究往往更关注本国和本地。其他领域也有这样的地区性或本国性课题,比如非洲撒哈拉以南地区的艾滋病流行病学研究。
为了创作出能受到高影响力期刊的青睐的论文,这种多元化和社会意义往往会被压抑;而高影响力期刊往往是英语期刊。在Web of Science中,被引用较多的西班牙社会学家研究往往是研究抽象模型或美国数据。社会学家在高影响力的西班牙语论文中体现出的对具体问题的关注——比如当地劳动法、老年人家庭保健和移民就业等等,并没有出现在英语期刊中。因此,我们需要基于高质量非英语期刊的指标,来评估和奖励卓越的本地性研究。
(6)考虑文章发表和引用时的学科差异。最好的办法是,选择一系列可行的指标,允许各学科从中采纳。几年前,一支欧洲历史学家团队在全国性同行评估中获得了较低的评分,因为他们将研究成果编纂成书,而未发表在Web of Science收录的期刊上。此外,他们的工作单位还不幸是心理学系。将书籍和本地语言期刊纳入评估范围是历史学家和社会学家的需要,计算机科学家则需要评估时将会议论文纳入考虑。
(7)对学者个人的评估应以对其研究成果的质化判断为基础。随着年龄增长,研究者的h指数必然会提高,即便他们不再发表新论文也是如此。h指数因学科差异也有不同:生命科学家最高可达200,物理学家在100左右,社会科学家只有20-30。同时,这一指数也取决于数据库:有些计算机科学学者根据Web of Science数据的h指数为10左右,根据谷歌学术则为20-30。相较于依赖数字,阅读、评价学者的作品是更为公正的做法。就算是在比较众多学者时,最合适的方法也还是将每个人的专业、经验、活动和影响力等信息纳入考虑。