AaronSpark 发表于 2006-4-1 01:53

[转帖][分享]24种材料属性实例

Isotropic Elastic: High Carbon Steel <BR>MPMOD,1,1   <BR>MP,ex,1,210e9! Pa <BR>MP,nuxy,1,.29! No units <BR>MP,dens,1,7850! kg/m3 <BR><BR>Orthotropic Elastic: Al203 <BR>MPMOD,1,2   <BR>MP,ex,1,307e9! Pa <BR>MP,ey,1,358.1e9! Pa <BR>MP,ez,1,358.1e9! Pa <BR>MP,gxy,126.9e9! Pa <BR>MP,gxz,126.9e9! Pa <BR>MP,gyz,126.9e9! Pa <BR>MP,nuxy,1,.20! No units <BR>MP,nuxz,1,.20! No units <BR>MP,nuyz,1,.20! No units <BR>MP,dens,1,3750! kg/m3 <BR><BR>Anisotropic Elastic: Cadmium <BR>MPMOD,1,3   <BR>MP,dens,3400! kg/m3 <BR>TB,ANEL,1   <BR>TBDATA,1,121.0e9! C11 (Pa) <BR>TBDATA,2,48.1e9! C12 (Pa) <BR>TBDATA,3,121.0e9! C22 (Pa) <BR>TBDATA,4,44.2e9! C13 (Pa) <BR>TBDATA,5,44.2e9! C23 (Pa) <BR>TBDATA,6,51.3e9! C33 (Pa) <BR>TBDATA,10,18.5! C44 (Pa) <BR>TBDATA,15,18.5! C55 (Pa) <BR>TBDATA,21,24.2! C66 (Pa) <BR><BR>Blatz-K Rubber <BR>MPMOD,1,5   <BR>MP,gxy,1,104e7! Pa <BR><BR>Mooney-Rivlin: Rubber <BR>MPMOD,1,8   <BR>MP,dens,1,.0018! lb/in3 <BR>MP,nuxy,1,.499! No units <BR>TB,MOONEY,1   <BR>TBDATA,1,80! C10 (psi) <BR>TBDATA,2,20! C01 (psi) <BR><BR>Viscoelastic: G-11 Glass <BR>MPMOD,1,18   <BR>MP,dens,1,2390! kg/m3 <BR>TB,EVISC,1   <BR>TBDATA,46,27.4e9! Go (Pa) <BR>TBDATA,47,0.0! (Pa) <BR>TBDATA,48,60.5e9! Bulk modulus (Pa) <BR>TBDATA,61,.53! 1/ <BR><BR>Bilinear Isotropic Plasticity: Nickel Alloy <BR>MPMOD,1,6   <BR>MP,ex,1,180e9! Pa <BR>MP,nuxy,1,.31! No units <BR>MP,dens,1,8490! kg/m3 <BR>TB,BISO,1   <BR>TBDATA,1,900e6! Yield stress (Pa) <BR>TBDATA,2,445e6! Tangent modulus (Pa) <BR><BR>Transversely Anisotropic Elastic Plastic: 1010 Steel <BR>MPMOD,1,10   <BR>MP,ex,1,207e9! Pa <BR>MP,nuxy,1,.29! No units <BR>MP,dens,1,7845! kg/m3 <BR>TB,PLAW,,,,7   <BR>TBDATA,1,128.5e6! Yield stress (Pa) <BR>TBDATA,2,202e5! Initial strain at failure <BR>TBDATA,3,1.41! r-value <BR>TBDATA,4,1! Yield stress vs. plastic strain curve (see EDCURVE below) <BR>Strain(1) = 0,.05,.1,.15,.2 <BR>YldStres(1)=207e6,210e6,214e6,218e6,220e6 ! yield stress <BR>EDCURVE,ADD,1,Strain (1),YldStres(1) <BR><BR>Rate Sensitive Powerlaw Plasticity: A356 Aluminum <BR>MPMOD,1,17   <BR>MP,ex,1,75e9! Pa <BR>MP,nuxy,1,.33! No units <BR>MP,dens,1,2750! kg/m3 <BR>TB,PLAW,,,,4   <BR>TBDATA,1,1.002! k (MPa) <BR>TBDATA,2,.7! m <BR>TBDATA,3,.32! n <BR>TBDATA,4,5.0! Initial strain rate (s-1) <BR><BR>Plastic Kinematic: 1018 Steel <BR>MPMOD,1,19   <BR>MP,ex,1,200e9! Pa <BR>MP,nuxy,1,.27! No units <BR>MP,dens,1,7865! kg/m3 <BR>TB,PLAW,,,,1   <BR>TBDATA,1,310e6! Yield stress (Pa) <BR>TBDATA,2,763e6! Tangent modulus (Pa) <BR>TBDATA,4,40.0! C (s-1) <BR>TBDATA,5,5.0! P <BR>TBDATA,6,.75! Failure strain <BR><BR>Bilinear Kinematic Plasticity: Titanium Alloy <BR>MPMOD,1,33   <BR>MP,ex,1,100e9! Pa <BR>MP,nuxy,1,.36! No units <BR>MP,dens,1,4650! kg/m3 <BR>TB,BKIN,1   <BR>TBDATA,1,70e6! Yield stress (Pa) <BR>TBDATA,2,112e6! Tangent modulus (Pa) <BR><BR>Powerlaw Plasticity: Aluminum 1100 <BR>MPMOD,1,21   <BR>MP,ex,1,69e9! Pa <BR>MP,nuxy,1,.33! No units <BR>MP,dens,1,2710! kg/m3 <BR>TB,PLAW,,,,2   <BR>TBDATA,1,0.598! k <BR>TBDATA,2,0.216! n <BR>TBDATA,3,6500.0! C (s-1) <BR>TBDATA,4,4.0! P <BR><BR>3 Parameter Barlat Plasticity: Aluminum 5182 <BR>MPMOD,1,22   <BR>MP,ex,1,76e9! Pa <BR>MP,nuxy,1,.34! No units <BR>MP,dens,1,2720! kg/m3 <BR>TB,PLAW,,,,3   <BR>TBDATA,1,1! Hardening rule of 1 (yield stress) <BR>TBDATA,2,25e6! Tangent modulus (Pa) <BR>TBDATA,3,145e6! Yield stress (Pa) <BR>TBDATA,4,0.170! Barlat exponent, m <BR>TBDATA,5, .73! R00 <BR>TBDATA,6,.68! R45 <BR>TBDATA,7,.65! R90 <BR>TBDATA,8,0! CSID <BR><BR>Barlat Anisotropic Plasticity: 2008-T4 Aluminum <BR>MPMOD,1,23   <BR>MP,ex,1,76e9! Pa <BR>MP,nuxy,1,.34! No units <BR>MP,dens,1,2720! kg/m3 <BR>TB,PLAW,,,,6   <BR>TBDATA,1,1.04! k (MPa) <BR>TBDATA,2,.65! Initial strain at failure <BR>TBDATA,3,.254! n <BR>TBDATA,4,11! Barlat exponent, m <BR>TBDATA,5, 1.017! a <BR>TBDATA,6,1.023! b <BR>TBDATA,7,.9761! c <BR>TBDATA,8,.9861! f <BR>TBDATA,9,.9861! g <BR>TBDATA,9,.8875! h <BR><BR>Strain Rate Dependent Plasticity: 4140 Steel <BR>MPMOD,1,24   <BR>MP,ex,1,209e9! Pa <BR>MP,nuxy,1,.29! No units <BR>MP,dens,1,7850! kg/m3 <BR>TB,PLAW,,,,5   <BR>TBDATA,1,1! LCID yield stress vs. strain rate (see first EDCURVE command below) <BR>TBDATA,2,22e5! Tangent modulus (Pa) <BR>TBDATA,3,2! LCID Elastic modulus vs. strain rate (see second EDCURVE command below) <BR>StrnRate(1) = 0,.08,.16,.4,1.0 <BR>YldStres(1) = 207e6,250e6,275e6,290e6,300e6 <BR>ElasMod(1) = 209e9,211e9,212e9,215e9,218e9 <BR>EDCURVE,ADD,1,StrnRate(1),YldStres(1) <BR>EDCURVE,ADD,2,StrnRate(1),ElasMod(1) <BR><BR>Piecewise Linear Plasticity: High Carbon Steel <BR>MPMOD,1,28   <BR>MP,ex,1,207e9! Pa <BR>MP,nuxy,1,.30! No units <BR>MP,dens,1,7830! kg/m3 <BR>TB,PLAW,,,,8   <BR>TBDATA,1,207e6! Yield stress (Pa) <BR>TBDATA,3,.75! Failure strain <BR>TBDATA,4,40.0! C (strain rate parameter) <BR>TBDATA,5,5.0! P (strain rate parameter) <BR>TBDATA,6,1! LCID for true stress vs. true strain (see EDCURVE below) <BR>TruStran(1)=0,.08,.16,.4,.75 <BR>TruStres(1)=207e6,250e6,275e6,290e6,3000e6 <BR>EDCURVE,ADD,1,TruStran (1),TruStres(1) <BR><BR>Johnson-Cook Linear Polynomial EOS: 1006 Steel <BR>MPMOD,1,30   <BR>MP,ex,1,207e9! Pa <BR>MP,nuxy,1,.30! No units <BR>MP,dens,1,7850! kg/m3 <BR>TB,EOS,1,,,1,1   <BR>TBDATA,1,350.25e6! A (Pa) <BR>TBDATA,2,275e6! B (Pa) <BR>TBDATA,3,.36! n <BR>TBDATA,4,.022! c <BR>TBDATA,5,1.0! m <BR>TBDATA,6,1400! Melt temperature (oC) <BR>TBDATA,7,30! Room temperature (oC) <BR>TBDATA,8,10! Initial strain rate <BR>TBDATA,9,4500! Specific heat <BR>TBDATA,10,240e6! Failure stress <BR>TBDATA,11,-.8! Failure value D1 <BR>TBDATA,12,2.1! Failure value D2 <BR>TBDATA,13,-.5! Failure value D3 <BR>TBDATA,14,.0002! Failure value D4 <BR>TBDATA,15,.61! Failure value D5 <BR>TBDATA,17,20e5! EOS linear polynomial term <BR><BR>Johnson-Cook Gruneisen EOS: OFHC Copper <BR>MPMOD,1,31   <BR>MP,ex,1,138e9! Pa <BR>MP,nuxy,1,.35! No units <BR>MP,dens,1,8330! kg/m3 <BR>TB,EOS,1,,,1,2   <BR>TBDATA,1,89.63e6! A (Pa) <BR>TBDATA,2,291.64e6! B (Pa) <BR>TBDATA,3,.31! n <BR>TBDATA,4,.025! c <BR>TBDATA,5,1.09! m <BR>TBDATA,6,1200! Melt temperature (oC) <BR>TBDATA,7,30! Room temperature (oC) <BR>TBDATA,8,10! Initial strain rate <BR>TBDATA,9,4400! Specific heat <BR>TBDATA,10,240e6! Failure stress <BR>TBDATA,11,-.54! Failure value D1 <BR>TBDATA,12,4.89! Failure value D2 <BR>TBDATA,13,-3.03! Failure value D3 <BR>TBDATA,14,.014! Failure value D4 <BR>TBDATA,15,1.12! Failure value D5 <BR>TBDATA,16,.394! C <BR>TBDATA,17,1.489! S1 <BR>TBDATA,18,0.0! S2 <BR>TBDATA,19,0.0! S3 <BR>TBDATA,20,2.02! 0 <BR>TBDATA,21,.47! A <BR><BR>Null Material Linear Polynomial EOS: Brass <BR>MPMOD,1,32   <BR>MP,ex,1,200e9! Pa <BR>MP,nuxy,1,.3! No units <BR>MP,dens,1,7500! kg/m3 <BR>TB,EOS,1,,,2,1   <BR>TBDATA,1,0.0! Pressure cut-off <BR>TBDATA,3,1.5! Relative volume in tension <BR>TBDATA,4,.7! Relative volume in compression <BR>TBDATA,17,16e5! EOS linear polynomial <BR><BR>Null Material Gruneisen EOS: Aluminum <BR>MPMOD,1,29   <BR>MP,ex,1,100e9! Pa <BR>MP,nuxy,1,.34! No units <BR>MP,dens,1,2500! kg/m3 <BR>TB,EOS,1,,,2,2   <BR>TBDATA,1,-10000! Pressure cut-off (Pa) <BR>TBDATA,3,2.0! Relative volume in tension <BR>TBDATA,4,.5! Relative volume in compression <BR>TBDATA,16,.5386! C <BR>TBDATA,17,1.339! S1 <BR>TBDATA,18,0.0! S2 <BR>TBDATA,19,0.0! S3 <BR>TBDATA,20,1.97! 0 <BR>TBDATA,21,.48! A <BR><BR>Rigid Material: Steel <BR>MPMOD,1,7   <BR>MP,ex,1,207e9! Pa <BR>MP,nuxy,1,.3! No units <BR>MP,dens,1,7580! kg/m3 <BR>EDMP,rigid,1,7,7   <BR><BR>Cable Material: Steel <BR>MPMOD,1,27   <BR>MP,ex,1,207e9! Pa <BR>MP,nuxy,1,.3! No units <BR>EDMP,cable,1,1! See EDCURVE below <BR>EngStran(1) = .02,.04,.06,.08 <BR>EngStres(1) = 207e6,210e6,215e6,220e6 <BR>EDCURVE,ADD,1,EngStran (1),EngStres(1) <BR><BR>Transversely Anisotropic FLD: Stainless Steel <BR>MPMOD,1,54   <BR>MP,ex,1,30e6! Pa <BR>MP,nuxy,1,.29! No units <BR>MP,dens,1,.00285! kg/m3 <BR>TB,PLAW,1,,,10   <BR>TBDATA,1,20e3! Initial yield stress (Pa) <BR>TBDATA,2,5000! Tangent modulus (Pa) <BR>TBDATA,3,.2! Hardening parameter <BR>TBDATA,5,1! Maximum yield stress curve (see EDCURVE below) <BR>mnstrn(1) = -30,-10,0,20,40,50 <BR>mjstrn(1) = 80,40,29,39,45,44 <BR>EDCURVE,ADD,1,mnstrn (1),mjstrn(1) <BR><BR>Steinberg Gruneisen EOS: Stainless Steel <BR>MPMOD,1,52   <BR>MP,gxy,1,11.16e6! (Pa) <BR>MP,dens,1,.285! (kg/m3) <BR>TB,EOS,1,,,5,2   <BR>TBDATA,1,49.3e3! Initial yield stress (Pa) <BR>TBDATA,2,43! Hardening coefficient <BR>TBDATA,3,.35! n <BR>TBDATA,5,.36e6! Maximum yield stress (Pa) <BR>TBDATA,10,32! Atomic weight <BR>TBDATA,11,2380! Absolute melting temp. <BR>TBDATA,15,2! Spall type <BR>TBDATA,16,1! Cold compression energy flag <BR>TBDATA,17,-50! Min. temp. parameter <BR>TBDATA,18,200! Max. temp. parameter <BR>TBDATA,29,.457! C <BR>TBDATA,30,1.49! S1 <BR>TBDATA,31,0.0! S2 <BR>TBDATA,32,0.0! S3 <BR>TBDATA,33,1.93! 0 <BR>TBDATA,34,1.4! A <BR>

极限天子 发表于 2006-4-1 10:21

有中文的吗<BR><BR>好象不太明白<BR><BR>看不懂啊

caltcasc 发表于 2006-4-1 18:44

从帮助里直接复制过来的吧,楼主。

zhongyeshe 发表于 2006-4-1 19:02

谢谢

AaronSpark 发表于 2006-4-2 00:55

回复:(AaronSpark)[转帖][分享]24种材料属性实例

别的论坛看到的就顺手贴过来了

jacy 发表于 2006-7-18 20:08

谢了

5dehaoma 发表于 2006-7-18 22:58

看起来挺好的,不过没有具体说明那种材料啊

5dehaoma 发表于 2006-7-18 23:05

仔细看了看,基本能看懂,不过我见过课本后面有这个,那是中文的,现在该成命令六了

hello2001 发表于 2006-7-19 09:20

好东西,用中文解释一下会更好!!

sysh320 发表于 2006-7-19 10:44

什么书上有这个中文的解释啊?能不能麻烦你把中文的给粘上啊?

sysh320 发表于 2006-7-19 10:46

各种材料的适用性如果不是很了解的话,直接粘贴肯定会出问题的

zhangmeng 发表于 2006-7-19 17:49

这些材料特性在网上很好找的!
页: [1]
查看完整版本: [转帖][分享]24种材料属性实例