csu527 发表于 2008-11-13 09:02

原帖由 dingd 于 2008-11-12 21:09 发表 http://www.chinavib.com/forum/images/common/back.gif
抱歉啊,没用QQ。
呵呵 没事 我就是觉得你用这个软件好强啊 我想请教下你,想你多学习下。就我上面的两条曲线的拟合,你觉得如果不用分段拟合能不能拟合的出来啊?就是用整体拟合行不行啊 ?我用整体拟合效果一直不理想,是不是我用的模型公式不好啊?

csu527 发表于 2008-11-13 09:20

原帖由 dingd 于 2008-11-12 21:09 发表 http://www.chinavib.com/forum/images/common/back.gif
抱歉啊,没用QQ。


还有我想问下就是我上面的两条拟合,如果用分段拟合的话,我想保证在分段点处连续,应该就是分段点出一阶、二阶导数相等,怎么才能保证做到这点啊,应该怎么来加这个约束啊?能指教下吗?

dingd 发表于 2008-11-13 15:12

下面是个单一函数,有时间调整一下还能得到更好的结果:
y=a0*exp(-0.5*((x-a1)/a2)^2)+b0*exp(-0.5*((x-b1)/b2)^2)+ d0*exp(-0.5*((x-d1)/d2)^2)+e0*exp(-0.5*((x-e1)/e2)^2)+p1+p2*x+p3*ln(p4*x)

[ 本帖最后由 dingd 于 2008-11-13 19:48 编辑 ]

csu527 发表于 2008-11-13 19:54

原帖由 dingd 于 2008-11-13 15:12 发表 http://www.chinavib.com/forum/images/common/back.gif
下面是个单一函数,有时间调整一下还能得到更好的结果:
y=a0*exp(-0.5*((x-a1)/a2)^2)+b0*exp(-0.5*((x-b1)/b2)^2)+ d0*exp(-0.5*((x-d1)/d2)^2)+e0*exp(-0.5*((x-e1)/e2)^2)+p1+p2*x+p3*ln(p4*x)


dingd主任你好厉害啊,能想你求教下,你是怎么去确定一条复杂曲线的模型公式的啊?我用这个软件的自动搜索怎么搜不出来啊?很是郁闷啊,望dingd主任不吝赐教啊!!谢谢啦 能不能指导下具体做的步骤啊!

dingd 发表于 2008-11-13 20:52

熟能生巧+1stOpt超强的拟合能力而已!

1stOpt的自动搜索功能对这种复杂的曲线很难得到好结果的。观察一下曲线,将其视主要为四个高斯函数的合成。你自己可将个别高斯函数换成洛仑兹函数试试,再调整一下“倾斜”和”尾部“部分“p1+p2*x+p3*ln(p4*x) ”,应该可以得到更好的结果。

csu527 发表于 2008-11-14 09:14

原帖由 dingd 于 2008-11-13 20:52 发表 http://www.chinavib.com/forum/images/common/back.gif
熟能生巧+1stOpt超强的拟合能力而已!

1stOpt的自动搜索功能对这种复杂的曲线很难得到好结果的。观察一下曲线,将其视主要为四个高斯函数的合成。你自己可将个别高斯函数换成洛仑兹函数试试,再调整一下“倾斜”和 ...

谢谢dingd主任的指导,以后可能会经常请教您,上次你说你没用QQ,不知道你用的什么联系方式,怎样才能更好的联系到您呢?还有我现在用的是1.5未注册的版本,是不是比2.0差好多啊   还有一般向我这种拟合曲线的话是用什么算法比较好啊

[ 本帖最后由 csu527 于 2008-11-14 10:01 编辑 ]

csu527 发表于 2009-5-20 19:20

求助关于隐函数拟合的问题

下面一组数据用隐函数方程a1 + a2*x + a3*y + a4*x^2 + a5*x*y + a6*y^2 + a7*x^3 + a8*x^2*y + a9*x*y^2 + a10*y^3= 0;去拟合它,为什么拟合的很好,但是用1stopt的隐函数画图画出来却一点不像,真是为什么啊?求高人指教!!

87 126.00000000000001
86.5882260656103 125.00000000000001
86.22201095401024 124.00000000000001
85.90607538449153 123.00000000000001
85.6112877730674 122.00000000000001
85.31172927528834 121.00000000000001
85.00594172227541 120.00000000000001
84.71509738208454 119.00000000000001
84.47779183929279 118.00000000000001
84.34166910592847 117.00000000000001
84.34173602221803 116.00000000000001
84.47822818831332 115.00000000000001
84.71731334525714 114.00000000000001
85.01470602663822 113.00000000000001
85.33872523325566 112.00000000000001
85.67611462596173 111.00000000000001
86.02749922327737 110.00000000000001
86.40026267606764 109.00000000000001
86.79646501783785 108.00000000000001
87.20303171685211 107.00000000000001
87.5975213607598 106.00000000000001
87.96373647235984 105
88.29702324865015 104.00000000000001
88.59752136075979 103
88.8697449405618 102.00000000000001
89.12968487783857 101.00000000000001
89.39982632704712 100.00000000000001
89.69192956752492 99.00000000000001
90.00000000000001 98.00000000000001
90.3080704324751 97
90.60017367295289 96
90.87024820587187 95.00000000000001
91.12975179412814 94.00000000000001
91.39982632704714 93
91.69192956752492 92.00000000000001
92.00000000000001 91
92.30800351618554 90.00000000000001
92.59973732393237 89
92.86803224269927 88
93.12098748976535 87.00000000000001
93.37283036907982 86.00000000000001
93.62716963092019 85.00000000000003
93.87907942652423 84.00000000000003
94.13247102261082 83
94.40291498826075 82
94.70304366763943 81
95.03626352764016 80
95.4025455555298 79
95.79740463216842 78
96.20581786162434 77
96.60900489360526 76.00000000000003
97.0022159631726 75
97.40026267606763 74
97.82174827794262 73.00000000000001
98.270074532919 72
98.72992546708103 71
99.17831863834698 70.00000000000001
99.60017367295288 69.00000000000001
100 68
100.39982632704712 67
100.82168136165305 66
101.27000761662941 65.00000000000001
101.72948911806051 64
102.1760357588848 63
102.59097301956959 62.000000000000014
102.9707880788601 61.00000000000001
103.32623516979004 60
103.67326156489989 59.00000000000001
104.0269959579673 58
104.40026267606763 57
104.79696828314792 56
105.2056840290452 55.000000000000014
105.60850162829517 54.000000000000014
105.99949673468993 53
106.38877914322218 52
106.78326878712987 51
107.16676818921195 50
107.5052622008777 49.000000000000014
107.77577308281717 47.999999999999986
107.99116877934765 47
108.19451173073287 46
108.42675536872486 45
108.70025752286719 44.00000000000003
109 43
109.29967556084326 42.000000000000014
109.57280828225467 41
109.80327230609456 40.000000000000014
110 39.000000000000014
110.19672769390547 38
110.42719171774536 37
110.70032443915676 36
111 35.00000000000003
111.29967556084327 33.999999999999986
111.57280828225467 33
111.80327230609456 32
112.00000000000003 31
112.19679461019504 30.000000000000014
112.42769498305545 29
112.70297675134987 28
113.01104718382497 27.000000000000014
113.336006004773 26.000000000000014
113.66778667061945 25.000000000000014
114.00328941008235 23.999999999999986
114.34755645390803 23.000000000000014
114.71724642896758 21.999999999999986
115.14494141202303 21.00006691628957
115.67502279850835 20.000570181599656
116.34173602221804 19.003222493792748
117.144941412023 18.014202761328136
118.05053320525789 17.049963023658236
119.01426967761772 16.141718918230225
120.00322249379278 15.327466344600325
121.00057018159967 14.624489593250459
122 14
页: 1 [2]
查看完整版本: 关于混合型曲线拟合的问题