【总结帖】分岔图绘制不同方法的总结、比较
经过近期的研究发现,目前对于系统单参数分岔图的计算共有以下的几种方法:1)最大值法
即对系统微分方程(组)进行求解,对求解的结果用getmax函数进行取点,并绘图。
2)Poincare截面法
对系统参数的每一次取值,绘制其Poincare截面,进而得到其分岔图。
这种方法需要注意的是,自治系统的Poincare截面是选取一超平面,平面上点的分布即构成一Poincare截面,非自治系统的Poincare截面则是根据系统激励的频率进行取点并绘图。
本帖将以Lorenz系统为例,对这两种方法进行比较
首先对第二种方法进行阐述。
编程如下(matlab)
Lorenz系统:
function dy = Lorenz(t,y)
% Lorenz系统
% 系统微分方程:
% dx/dt = -a(x-y)
% dy/dt = x(r-z)-y
% dz/dt = xy-bz
% a=y(4)
% r=y(5)
% b=y(6)
dy=zeros(6,1);
dy(1)=-y(4)*(y(1)-y(2));
dy(2)=y(1)*(y(5)-y(3))-y(2);
dy(3)=y(1)*y(2)-y(6)*y(3);
dy(4)=0;
dy(5)=0;
dy(6)=0;
随r的分岔图求解程序:——按照x=y平面取截面
function Lorenz_bifur_r
Z=[];
for r=linspace(1,500,1000);
% 舍弃前面迭带的结果,用后面的结果画图
=ode45('Lorenz',,);
=ode45('Lorenz',,Y(length(Y),:));
Y(:,1)=Y(:,2)-Y(:,1);
% 对计算结果进行判断,如果点满足x=y,则取点
for k=2:length(Y)
f=k-1;
if Y(k,1)<0
if Y(f,1)>0
y=Y(k,2)-Y(k,1)*(Y(f,2)-Y(k,2))/(Y(f,1)-Y(k,1));
Z=;
end
else
if Y(f,1)<0
y=Y(k,2)-Y(k,1)*(Y(f,2)-Y(k,2))/(Y(f,1)-Y(k,1));
Z=;
end
end
end
end
plot(Z,'.','markersize',1)
title('Lorenz映射分岔图')
xlabel('r'),ylabel('|y| where x=y')
结果如图1所示。
http://forum.vibunion.com/data/attachment/album/2008/03/51118_200803140956141ZcCf.jpg
getmax法——取最大值法
function = getmax(y)
a=length(y);
j=1;
for i=(a-1)/2:a
b=(y(i,1)-y(i-2,1))/2;
c=(y(i,1)+y(i-2,1))/2-y(i-1,1);
if y(i-2,1)<=y(i-1,1)&y(i-1,1)>=y(i,1)&c==0
Xmax(j)=y(i-1,1);
j=j+1;
elseif y(i-2,1)<=y(i-1,1)&y(i-1,1)>=y(i,1)
Xmax(j)=y(i-1,1)-b^2/(4*c);
j=j+1;
end
end
function Lorenz_bifur_r_getmax
% 最大值法求解分岔图
clear all
t0=;%积分时间
%bifurcation
for r=linspace(1,500,1000);%r的变化精度
=ode45('Lorenz',t0,);
=getmax(y(:,1));
plot(r,Xmax,'b','markersize',1)
hold on
clear Xmax
end
计算结果如图2所示!
http://forum.vibunion.com/data/attachment/album/2008/03/51118_200803140956461pUZh.jpg
最后上传一下参考计算机仿真第22卷第12期上一篇文章“李雅普诺夫指数的研究与仿真”中Lorenz系统的分岔图计算结果,大家比较一下即可看出孰优孰劣了!
http://forum.vibunion.com/data/attachment/album/2008/03/51118_200803140957131wFMY.jpg
附件:
下面也请无水、小咕把你们有的关于非自治系统的频闪绘制分岔图的例子也贴一贴吧!让大家都能学习学习!呵呵! 支持! 回头一定贴出来,不过论坛里面这类程序其实很多了,总结一下就足够大家用了
我这几天先做试验,oct你先帮我看看实验