热应力-结构耦合分析问题
[请教]热应力-结构耦合分析问题小弟为ansys新手,在学习时遇到问题。
这是别人文章里的一个结果,我在重复实现时,总是无法出现一致结果,请大家帮忙看看问题出在什么地方,谢谢!
激光辐照充内压圆柱壳体(壳有一定厚度)
http://www.simwe.com/forum/attachments/day_070731/20070731_dd5fc541ec5dff8d9922Pp9pB58HnvsE.jpg.thumb.jpghttp://www.simwe.com/forum/images/simwe/attachimg.gif
物理模型如上图所示
P为内压,F为等效拉应力
我的问题是,热分析的温度分布基本和文献一致,但是相应的热应力以及结构分析的结果,远远弱于文献中的结论。
下面是用间接法分析的命令流(激光采用gui方式加载)
FINISH
/CLEAR
/BATCH
/FILNAME, thermal,1
/TITLE, thermal
!SI单位制下:
!************basic parameters*************************
Ro=0.027 !outer radius(m)
ri=0.023 !inner radius(m)
Ra=0.040 !laser as(m)
d=0.004 !thickness(m)
L=0.080 !length(m)
!****parameters of laser****
rl=0.020 !radius of laser(m)
I=2.313*1.5e6 !average power(W/mm^2)
!****parameters of press****
p=5e6 !inner press(Pa)
p0=31.63e6 !limit press(Pa)
/PREP7
!柱壳材料为Ly12铝合金
ET,1,SOLID70 !element type
MPTEMP,1,20,100,200,250,300,350 !temp table(`c) 6个点
!材料密度
MP,DENS,1,2.8e3 !density(Kg/m^3)
!比热 c = 770.045 + 1.671*t - 0.000152*t^2
MPDATA,c,1,1,0.900e3,0.921e3,1.047e3,1.092e3,1.130e3,1.172e3 !specific heat(J/(Kg.`c))
!热传导系数
MPDATA,KXX,1,1,0.121e3,0.121e3,0.121e3,0.121e3,0.121e3,0.121e3 !thermal conductivity(W/(mm.`c))
TOFFST,273 !参考温度,初始温度
!************mode mesh*************************
K,200,0,0,0
wprot,0,0,90
PCIRC,Ro,ri,0,180,
VOFFST,1,-L, ,
wprot,0,0,-90
VSBW, 1
PCIRC,RL, ,90,270,
VOFFST,1,RA, ,
VSBA, 2, 3
VDELE, 1, , ,1
K,100,-RA,0,0
KWPAVE, 100
wprot,0,0,90
VSBW, 5
VSBW, 3
KWPAVE, 200
wprot,0,0,-90
SAVE
!划分单元
Lesize,2,,,4 !厚度划分
Lesize,4,,,4
Lesize,6,,,4
Lesize,8,,,4
Lesize,14,,,4
Lesize,15,,,4
Lesize,38,,,4
LESIZE,30, , ,20,4, , , ,1 !光斑区不等分划分
LESIZE,31, , ,20,4, , , ,1
LESIZE,33, , ,20,4, , , ,1
LESIZE,34, , ,20,4, , , ,1
Lesize,16,,,10
Lesize,17,,,10
Lesize,21,,,10
Lesize,22,,,10
Lesize,23,,,10
Lesize,24,,,10
MSHAPE,0,3d
MSHKEY,1
VMESH,4
MSHKEY,0
VSWEEP,2,7,23 !过渡区不等分划分
VSWEEP,1 !其他部分
VSWEEP,5
VSWEEP,6
ALLSEL,ALL
SAVE
FINISH
/SOL
!*
!分析设置
ANTYPE,4
TRNOPT,FULL
LUMPM,0
NLGEOM,1
OUTPR,BASIC,ALL,
OUTRES,ALL,ALL,
!加载载荷
!初始温度
TUNIF,30,
!加载激光热流密度
*DEL,_FNCNAME
*DEL,_FNCMTID
*DEL,_FNC_C1
*DEL,_FNC_C2
*DEL,_FNCCSYS
*SET,_FNCNAME,'myload'
*DIM,_FNC_C1,,1
*DIM,_FNC_C2,,1
*SET,_FNC_C1(1),I
*SET,_FNC_C2(1),RL
*SET,_FNCCSYS,0
! /INPUT,guass.func,,,1
*DIM,%_FNCNAME%,TABLE,6,17,1,,,,%_FNCCSYS%
!
! Begin of equation: I*exp(-2*({X}^2+{Y}^2)/RL^2)
*SET,%_FNCNAME%(0,0,1), 0.0, -999
*SET,%_FNCNAME%(2,0,1), 0.0
*SET,%_FNCNAME%(3,0,1), %_FNC_C1(1)%
*SET,%_FNCNAME%(4,0,1), %_FNC_C2(1)%
*SET,%_FNCNAME%(5,0,1), 0.0
*SET,%_FNCNAME%(6,0,1), 0.0
*SET,%_FNCNAME%(0,1,1), 1.0, -1, 0, 0, 0, 0, 0
*SET,%_FNCNAME%(0,2,1), 0.0, -2, 0, 1, 0, 0, -1
*SET,%_FNCNAME%(0,3,1), 0, -3, 0, 1, -1, 2, -2
*SET,%_FNCNAME%(0,4,1), 0.0, -1, 0, 2, 0, 0, -3
*SET,%_FNCNAME%(0,5,1), 0.0, -2, 0, 1, -3, 3, -1
*SET,%_FNCNAME%(0,6,1), 0.0, -1, 0, 2, 0, 0, 2
*SET,%_FNCNAME%(0,7,1), 0.0, -3, 0, 1, 2, 17, -1
*SET,%_FNCNAME%(0,8,1), 0.0, -1, 0, 2, 0, 0, 3
*SET,%_FNCNAME%(0,9,1), 0.0, -4, 0, 1, 3, 17, -1
*SET,%_FNCNAME%(0,10,1), 0.0, -1, 0, 1, -3, 1, -4
*SET,%_FNCNAME%(0,11,1), 0.0, -3, 0, 1, -2, 3, -1
*SET,%_FNCNAME%(0,12,1), 0.0, -1, 0, 2, 0, 0, 18
*SET,%_FNCNAME%(0,13,1), 0.0, -2, 0, 1, 18, 17, -1
*SET,%_FNCNAME%(0,14,1), 0.0, -1, 0, 1, -3, 4, -2
*SET,%_FNCNAME%(0,15,1), 0.0, -1, 7, 1, -1, 0, 0
*SET,%_FNCNAME%(0,16,1), 0.0, -2, 0, 1, 17, 3, -1
*SET,%_FNCNAME%(0,17,1), 0.0, 99, 0, 1, -2, 0, 0
! End of equation: I*exp(-2*({X}^2+{Y}^2)/RL^2)
!-->
SFA,17,1,HFLUX, %MYLOAD%
ALLSEL,ALL
SBCTRAN
TRNOPT,FULL !设置计算方法
*DO,DELTA,0.001,3.5,0.1 !设置循环计算
TIME,DELTA !设置荷载步时间
AUTOTS,0 !关闭自动时间步长
KBC,0 !设置阶梯荷载步
TSRES,ERASE !Defines an array of keytimes at which the time-stepping strategy changes
OUTRES,ALL,ALL !输出所有项
SOLVE !开始计算
*ENDDO !终止循环计算
FINISH
!结构应力分析
/PREP7 !前处理
ETCHG,TTS !转换热分析单元为结构单元
!输入参数
!热胀系数alpha = 21.079 + 0.0175*t - 0.000018*t^2
MPDATA,ALPX,1,1,21.4e-6,22.7e-6,23.8e-6,24.3e-6,24.71e-6,25.00e-6 !linear expansion coefficient(1/`c)e-6
MPPLOT,KXX,1
!弹性模量ex = 69.3 - 0.048*t - 0.000144*t^2
MPDATA,EX,1,1,68E9,64E9,54E9,48E9,42E9,34.9E9 !elastic modulus(Pa) {}
!泊松比
MPDATA,PRXY,1,1,0.3,0.3,0.3,0.3,0.3,0.3,0.3 !Poisson ratio
MPPLOT,EX,1
!屈服强度σs和抗拉强度σb和硬化模量
!MPTEMP,1, 47, 87, 143, 197, 243, 289, 343, 403
!yield stress(Pa) 4.11e8,3.983e8,3.794e8,3.303e8,2.742e8,1.613e8,0.811e8,0.672e8
!tension strength(Pa)6.38e8,5.802e8,5.488e8,5.155e8,3.989e8,1.782e8,1.025e8,0.676e8
!tang mod(Pa) 6.72e8,6.403e8,5.949e8,5.426e8,4.913e8,4.340e8,3.589e8,2.657e8
!硬化模量EX/10(<300);EX/50(>300)
!假设各材料都是双线性随动硬化弹塑性本构关系
!下面是各材料在各温度点下的屈服应力和屈服后的弹性模量
!Yield stress(Pa)
!Tang Mod(Pa)
TB,BISO,1,6,2,
TBTEMP,47
TBDATA,1,4.110e8,6.720e9
TBTEMP,87
TBDATA,1,3.983e8,6.403e9
TBTEMP,197
TBDATA,1,3.303e8,5.426e9
TBTEMP,243
TBDATA,1,2.742e8,4.913e9
TBTEMP,289
TBDATA,1,1.613e8,4.340e9
TBTEMP,343
TBDATA,1,0.811e8,3.589e9
ALLSEL !选择选择所有
/SOLU !进入求解器
NROPT,FULL !Specifies the Newton-Raphson options in a full transient analysis
NLGEOM,ON !考虑大变形的影响
!对称位移约束
NSEL,S,LOC,X,0
DSYM,SYMM,X,,
NSEL,S,LOC,Y,0
DSYM,SYMM,Y,,
!对称位移约束
!柱壳另一端固定?
NSEL,S,LOC,X,-L
D,ALL, ,0, , , ,UX,UY,UZ, , ,
NSEL,S,LOC,X,-L
F,ALL,FX,-P*RI/D
!加载内压
SFA,3,1,PRES,P
SFA,16,1,PRES,P
SFA,18,1,PRES,P
SFA,24,1,PRES,P
SFA,28,1,PRES,P
ALLSEL,ALL
SBCTRAN
*DO,DELTA,0.001,3.5,0.1
LDREAD,TEMP,,,DELTA, ,'thermal1','rth',' ' !TEMP LOAD Reads results from the results file and applies them as loads.
TIME,DELTA
AUTOTS,0
KBC,0 !设置阶梯荷载步
TSRES,ERASE !Defines an array of keytimes at which the time-stepping strategy changes
OUTRES,ALL,ALL, !输出所有的结果
SOLVE !计算
*ENDDO
FINISH http://www.simwe.com/forum/images/attachicons/image.gif phymodel.JPG (15.62 KB)
2007-7-31 09:38
RE:发一下别人文献中的结果呀
发一下别人文献中的结果呀,不然我们做了,也不知道有无此类问题呀。 !对称位移约束NSEL,S,LOC,X,0
DSYM,SYMM,X,,
NSEL,S,LOC,Y,0
DSYM,SYMM,Y,,
!对称位移约束
!柱壳另一端固定?
NSEL,S,LOC,X,-L
D,ALL, ,0, , , ,UX,UY,UZ, , ,
NSEL,S,LOC,X,-L
F,ALL,FX,-P*RI/D
其他约束看起来没有什么问题,下面的有点问题
NSEL,S,LOC,X,-L
D,ALL, ,0, , , ,UX,UY,UZ, , ,
NSEL,S,LOC,X,-L
F,ALL,FX,-P*RI/D
x=-l的面全约束了,你再加等效拉力有什么用?等效拉力的值好像也不对。改成下面的试试。
NSEL,S,LOC,X,0
F,ALL,FX,-P*RI/(2*D)
KSEL,,LOC,X,-L
KSEL,R,LOC,Y,RI+D
DK,all, , , ,0,UZ, , , , , ,
要么建1/2模型,筒体上端全约束,下端加等效拉力。
[ 本帖最后由 venture 于 2007-8-15 08:50 编辑 ] 我的问题是,热分析的温度分布基本和文献一致,但是相应的热应力以及结构分析的结果,远远弱于文献中的结论。
那肯定是结构分析出问题了,在结构分析里面找原因。
回复 地板 venture 的帖子
大家好我用的是间接法模拟焊接温度场跟残余应力场的
我有两个问题亟待解决
(1)我看到好多文献一般都用solid70进行热分析
结构分析用的是solid45单元
但我计算完温度再算应力进行单元转换时solid70转换成了solid185
不知道为什么
(2)我看到一些文献进行应力求解时候,这样做的:施加载荷时,读入热分析的节点温度并制定相应的时间点或载荷步即可。(这个没问题,都会)因为焊接过程中熔池区的金属处于融化状态,即进入零力学性能状态,其所有的应力应变将消失。对此,采用生死单元的方法,在每一步热应力计算时,将对应的温度场计算结果进行选择,超过熔点的单元令其“死掉”,而低于熔点的单元令其“激活”。我不知道这种做法对不对。如果对的话该怎么把节点温度为熔点以上的单元选出来呢,能不能指点一下?谢谢
补充一点,因为我做的是薄板焊接,所以我只是用高斯移动热源进行加载热源,并没有采用生死单元技术。
期待大家的帮助,再一次感谢! 请问,在热应力分析的时候,应力分析部分的程序一定要加位移约束吗?不加可以吗? 我这里有一个热焊接模拟的实例,可供参考。
需要的话,请联系!
页:
[1]