简支梁模态分析求总体刚度矩阵
我用模态分析来模拟一个简支梁的损伤识别,首先建立的是无损状况下的(为了简单起见,我的单元只划分了4个)以下是命令流:
/prep7
et,1,3
mp,ex,1,3.65e10
mp,prxy,1,0.2
mp,dens,1,2500
r,1,3.08,1.2423,2.2
k,1,
k,2,20
l,1,2
lesiz,all,,,4
lmesh,1
d,all,ux
d,1,uy
d,2,uy
/solu
ANTYPE,2
MODOPT,SUBSP,6
MXPAND,6
SOLVE
一共是5个节点,15个自由度,约束有7个,所以最后得到的整体刚度矩阵、质量矩阵应该是8阶的。
每个单元有6个自由度,所以单元的刚度矩阵、质量矩阵应该是6阶的。
我的问题是:
1、整体刚度矩阵应该是个大型的稀疏矩阵才对而我的整体刚度矩阵不是这样的,请问问题出在哪里?
2、整体质量矩阵应该是个对角阵呀。而我的也不是。而且这个单元质量矩阵怎么理解呢?
下面分别是两种矩阵
整体:
ROW 1 MATRIX 1
0.36275160E+11 0.0000000 -0.10882548E+110.18137580E+11 0.0000000
0.0000000 0.0000000 0.0000000
ROW 1 MATRIX 2
11237.167 0.0000000 5647.7583 -7392.6250 0.0000000
0.0000000 0.0000000 0.0000000
ROW 2 MATRIX 1
0.0000000 0.36275160E+11 0.0000000 0.0000000 0.0000000
0.0000000 0.10882548E+110.18137580E+11
ROW 2 MATRIX 2
0.0000000 11237.167 0.0000000 0.0000000 0.0000000
0.0000000 -5647.7583 -7392.6250
ROW 3 MATRIX 1
-0.10882548E+11 0.0000000 0.87060384E+10 0.0000000 -0.43530192E+10
0.10882548E+11 0.0000000 0.0000000
ROW 3 MATRIX 2
5647.7583 0.0000000 30090.760 0.0000000 4204.6200
-5647.7583 0.0000000 0.0000000
ROW 4 MATRIX 1
0.18137580E+11 0.0000000 0.0000000 0.72550320E+11 -0.10882548E+11
0.18137580E+11 0.0000000 0.0000000
ROW 4 MATRIX 2
-7392.6250 0.0000000 0.0000000 22474.333 5647.7583
-7392.6250 0.0000000 0.0000000
ROW 5 MATRIX 1
0.0000000 0.0000000 -0.43530192E+10 -0.10882548E+110.87060384E+10
0.0000000 -0.43530192E+100.10882548E+11
ROW 5 MATRIX 2
0.0000000 0.0000000 4204.6200 5647.7583 30090.760
0.0000000 4204.6200 -5647.7583
ROW 6 MATRIX 1
0.0000000 0.0000000 0.10882548E+110.18137580E+11 0.0000000
0.72550320E+11 -0.10882548E+110.18137580E+11
ROW 6 MATRIX 2
0.0000000 0.0000000 -5647.7583 -7392.6250 0.0000000
22474.333 5647.7583 -7392.6250
ROW 7 MATRIX 1
0.0000000 0.10882548E+11 0.0000000 0.0000000 -0.43530192E+10
-0.10882548E+110.87060384E+10 0.0000000
ROW 7 MATRIX 2
0.0000000 -5647.7583 0.0000000 0.0000000 4204.6200
5647.7583 30090.760 0.0000000
ROW 8 MATRIX 1
0.0000000 0.18137580E+11 0.0000000 0.0000000 0.10882548E+11
0.18137580E+11 0.0000000 0.72550320E+11
ROW 8 MATRIX 2
0.0000000 -7392.6250 0.0000000 0.0000000 -5647.7583
-7392.6250 0.0000000 22474.333
单元:
STIFFNESS MATRIX FOR ELEMENT 1
1 0.2248400E+110.0000000E+000.0000000E+00 -0.2248400E+110.0000000E+000.0000000E+00
2 0.0000000E+000.4353019E+100.1088255E+110.0000000E+00 -0.4353019E+100.1088255E+11
3 0.0000000E+000.1088255E+110.3627516E+110.0000000E+00 -0.1088255E+110.1813758E+11
4-0.2248400E+110.0000000E+000.0000000E+000.2248400E+110.0000000E+000.0000000E+00
5 0.0000000E+00 -0.4353019E+10 -0.1088255E+110.0000000E+000.4353019E+10 -0.1088255E+11
6 0.0000000E+000.1088255E+110.1813758E+110.0000000E+00 -0.1088255E+110.3627516E+11
MASS MATRIX FOR ELEMENT 1
1 0.1283333E+050.0000000E+000.0000000E+000.6416667E+040.0000000E+000.0000000E+00
2 0.0000000E+000.1504538E+050.1039391E+050.0000000E+000.4204620E+04 -0.5647758E+04
3 0.0000000E+000.1039391E+050.1123717E+050.0000000E+000.5647758E+04 -0.7392625E+04
4 0.6416667E+040.0000000E+000.0000000E+000.1283333E+050.0000000E+000.0000000E+00
5 0.0000000E+000.4204620E+040.5647758E+040.0000000E+000.1504538E+05 -0.1039391E+05
6 0.0000000E+00 -0.5647758E+04 -0.7392625E+040.0000000E+00 -0.1039391E+050.1123717E+05
STIFFNESS MATRIX FOR ELEMENT 2
1 0.2248400E+110.0000000E+000.0000000E+00 -0.2248400E+110.0000000E+000.0000000E+00
2 0.0000000E+000.4353019E+100.1088255E+110.0000000E+00 -0.4353019E+100.1088255E+11
3 0.0000000E+000.1088255E+110.3627516E+110.0000000E+00 -0.1088255E+110.1813758E+11
4-0.2248400E+110.0000000E+000.0000000E+000.2248400E+110.0000000E+000.0000000E+00
5 0.0000000E+00 -0.4353019E+10 -0.1088255E+110.0000000E+000.4353019E+10 -0.1088255E+11
6 0.0000000E+000.1088255E+110.1813758E+110.0000000E+00 -0.1088255E+110.3627516E+11
MASS MATRIX FOR ELEMENT 2
1 0.1283333E+050.0000000E+000.0000000E+000.6416667E+040.0000000E+000.0000000E+00
2 0.0000000E+000.1504538E+050.1039391E+050.0000000E+000.4204620E+04 -0.5647758E+04
3 0.0000000E+000.1039391E+050.1123717E+050.0000000E+000.5647758E+04 -0.7392625E+04
4 0.6416667E+040.0000000E+000.0000000E+000.1283333E+050.0000000E+000.0000000E+00
5 0.0000000E+000.4204620E+040.5647758E+040.0000000E+000.1504538E+05 -0.1039391E+05
6 0.0000000E+00 -0.5647758E+04 -0.7392625E+040.0000000E+00 -0.1039391E+050.1123717E+05
STIFFNESS MATRIX FOR ELEMENT 3
1 0.2248400E+110.0000000E+000.0000000E+00 -0.2248400E+110.0000000E+000.0000000E+00
2 0.0000000E+000.4353019E+100.1088255E+110.0000000E+00 -0.4353019E+100.1088255E+11
3 0.0000000E+000.1088255E+110.3627516E+110.0000000E+00 -0.1088255E+110.1813758E+11
4-0.2248400E+110.0000000E+000.0000000E+000.2248400E+110.0000000E+000.0000000E+00
5 0.0000000E+00 -0.4353019E+10 -0.1088255E+110.0000000E+000.4353019E+10 -0.1088255E+11
6 0.0000000E+000.1088255E+110.1813758E+110.0000000E+00 -0.1088255E+110.3627516E+11
MASS MATRIX FOR ELEMENT 3
1 0.1283333E+050.0000000E+000.0000000E+000.6416667E+040.0000000E+000.0000000E+00
2 0.0000000E+000.1504538E+050.1039391E+050.0000000E+000.4204620E+04 -0.5647758E+04
3 0.0000000E+000.1039391E+050.1123717E+050.0000000E+000.5647758E+04 -0.7392625E+04
4 0.6416667E+040.0000000E+000.0000000E+000.1283333E+050.0000000E+000.0000000E+00
5 0.0000000E+000.4204620E+040.5647758E+040.0000000E+000.1504538E+05 -0.1039391E+05
6 0.0000000E+00 -0.5647758E+04 -0.7392625E+040.0000000E+00 -0.1039391E+050.1123717E+05
STIFFNESS MATRIX FOR ELEMENT 4
1 0.2248400E+110.0000000E+000.0000000E+00 -0.2248400E+110.0000000E+000.0000000E+00
2 0.0000000E+000.4353019E+100.1088255E+110.0000000E+00 -0.4353019E+100.1088255E+11
3 0.0000000E+000.1088255E+110.3627516E+110.0000000E+00 -0.1088255E+110.1813758E+11
4-0.2248400E+110.0000000E+000.0000000E+000.2248400E+110.0000000E+000.0000000E+00
5 0.0000000E+00 -0.4353019E+10 -0.1088255E+110.0000000E+000.4353019E+10 -0.1088255E+11
6 0.0000000E+000.1088255E+110.1813758E+110.0000000E+00 -0.1088255E+110.3627516E+11
MASS MATRIX FOR ELEMENT 4
1 0.1283333E+050.0000000E+000.0000000E+000.6416667E+040.0000000E+000.0000000E+00
2 0.0000000E+000.1504538E+050.1039391E+050.0000000E+000.4204620E+04 -0.5647758E+04
3 0.0000000E+000.1039391E+050.1123717E+050.0000000E+000.5647758E+04 -0.7392625E+04
4 0.6416667E+040.0000000E+000.0000000E+000.1283333E+050.0000000E+000.0000000E+00
5 0.0000000E+000.4204620E+040.5647758E+040.0000000E+000.1504538E+05 -0.1039391E+05
6 0.0000000E+00 -0.5647758E+04 -0.7392625E+040.0000000E+00 -0.1039391E+050.1123717E+05
先谢谢了。
.
完全可以自己手解一下结果和上面ANASYS结果对照一下,就会找出差别和问题所在了. . . 回复 2 # 欧阳中华 的帖子
对于我建立的这个简支梁,整体刚度矩阵应该是稀疏矩阵,应该没错吧? 回复 2 # 欧阳中华 的帖子
1、局部坐标系下单元刚度矩阵的一般公式::应变位移关系矩阵:应力应变关系矩阵 2、局部坐标系下单元刚度矩阵对小参数的一阶变化率:形函数矩阵:应力应变关系矩阵注:公式2是在摄动理论中计算损伤单元刚度的有两个问题1、ansys计算单元刚度矩阵式按照公式1吗?2、按照公式2计算的刚度ansys怎么提取呢?
.
有限元程序都是按照有限元理论做出来的呀. . 回复 4 # dongwu_an 的帖子
一个是基本的单元矩阵理论,一个是黑匣子分析软件。。跨度有点大啊。。 回复 6 # dw04116 的帖子
基于固有频率与摄动理论来识别结构的损伤问题中,需要用到这两个刚度矩阵。是摄动理论当中的一个问题,按我的理解这个理论就是把固有频率的改变与单元的刚度特性联系在一起,从而通过频率的改变能定位损伤单元的位置。
您能仔细告诉我一下,关于小参数的单元刚度矩阵和黑匣子分析软件的关系吗 回复 7 # dongwu_an 的帖子
此类分析软件的“黑匣子”应该没有人打的开……
理论方面刚度矩阵我是自己编程的,单元矩阵是套用现成的。
线性理论的刚度矩阵和非线性理论不一定一样。。非线性刚度矩阵的概念我有点不理解。。感觉有点不伦不类 楼主,您好!请问整体刚度矩阵是如何提取出来的,谢谢!期待您的回复。
页:
[1]